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Surface-embedded Green-function method: A formulation using a
linearized-augmented-plane-wave basis set

H. Ishida
College of Humanities and Sciences, Nihon University, Sakura-josui, Tokyo 156, Japan

~Received 28 November 2000; published 3 April 2001!

We present a first-principles method for calculating the Green function of a semi-infinite crystal surface
using the embedding technique of Inglesfield and the linearized-augmented-plane-wave~LAPW! basis set. The
calculation consists of two independent steps:~i! The embedding potential of a semi-infinite substrate is
generated from the bulk crystalline potential, and~ii ! a self-consistent surface Green function calculation is
performed in the embedded surface region. The numerical advantages of our method over the previous ones are
~i! that one does not need to determine the exact shape of the curvy embedding surface between the bulk and
surface regions and~ii ! that there is no need to explicitly treat the cap region~a portion of the muffin-tin sphere
cut by a plane! of boundary atoms near the embedding surface. By virtue of them, the total amount of
numerical work for performing a surface-embedded Green function calculation is reduced nearly to the same
level as that in standard surface electronic-structure calculations within the slab approximation. As an example,
we calculate the electronic structure of the~001! and ~111! surfaces of Rh, Pd, and Ag.

DOI: 10.1103/PhysRevB.63.165409 PACS number~s!: 73.20.At, 71.15.2m, 71.15.Mb
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I. INTRODUCTION

Methods for calculating the electronic structure of crys
surfaces are divided into two groups. In the first one,
surface is modeled by a thin slab consisting of;10 atomic
layers. Combined with Car-Parrinello–like iterativ
techniques,1 the slab geometry has been utilized extensiv
for first-principles total energy calculations of solid surfac
In the second group, the surface is treated as a semi-infi
system. As an advantage, the semi-infinite method can f
describe the three-dimensional electronic band structure
bulk crystal, which is essential for treating scattering pro
lems such as photoemission and for studying Fermi-sur
properties such as surface resistivity. The semi-infinite me
ods are further classified into those computing electron w
functions2–7 and those treating the surface Gre
function.8–12 The Green-function approach is suitable f
ground-state electronic-structure calculations, since
charge density can easily be calculated by performing a c
tour integral in the complex energy plane. Most of the s
face Green-function methods are based on the Dyson e
tion, where the Green function of a bulk crystal is compu
as an unperturbed system.8–10 For systems with simplified
one-dimensional or muffin-tin~MT! potentials, the Green
function can be constructed directly from the solutions of
Schrödinger equation.11 The embedding method o
Inglesfield12 is unique in its formulation. In his method, on
considers a surface region with a finite thickness embed
between the semi-infinite substrate and the vacuum, and
effects on the surface are taken into consideration via c
plex potential energies acting on the embedding surface
the substrate and vacuum sides.

Recently we developed a surface-embedded Gre
function code using a plane-wave-like basis set and
norm-conserving pseudopotential.13 A possible extention of
the method toward handling the 2p-row elements and tran
sition metals may be to represent ion cores by the ultra
0163-1829/2001/63~16!/165409~10!/$20.00 63 1654
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pseudopotential of Vanderbilt.14 Instead, in the present work
we adopt linearized-augmented-plane-wave~LAPW! basis
functions.15 The surface embedding method combined w
the LAPW basis set was originally developed by Inglesfie
and Benesh.16 In that work, the surface region was treate
with the full-potential LAPW ~FLAPW! scheme, whereas
the embedding potential of the substrate was generated u
a standard layer Korringa-Kohn-Rostoker~LKKR ! technique
within the MT potential approximation.7 More recently
Crampinet al. proposed a full-potential scheme for gener
ing the embedding potential of a semi-infinite substr
within the embedding approach itself.17 Their formulation
was cast into a scattering theory and incarnated in
FLAPW-based surface Green-function code by van Hov18

In the present work, we aim at developing a computatio
method which enables us to perform a surface Gre
function calculation at the same level of accuracy as tha
van Hove18 with significantly less numerical work.

The surface embedded Green-function calculation c
sists of two independent procedures. First, the embedd
potential of a semi-infinite substrate is generated from
bulk crystalline potential. Second, a self-consiste
electronic-structure calculation is performed in the surfa
embedded region. Our method has the following advanta
in each step. Regarding the generation of the embedding
tential, if the embedding surface on the substrate side is c
sen as a plane, it intersects MT spheres of the bound
atoms. By adding the caps~a small portion of a MT sphere
cut by the plane! of atoms on the surface side and removi
those of atoms on the bulk side, one can define a sur
embedded region that does not cut the MT spheres. The
sultant embedding surfaceSc , however, has a bumpy shap
which is numerically too complicated to treat. As was sho
by Crampinet al.,17 the embedding onSc can be transmitted
to embedding on an equivalent plane surfaceS, which is
separated fromSc by a nonphysical buffer spaceD. In our
method, the self-consistent equation for determining the e
bedding potential onScan be derived without specifying th
©2001 The American Physical Society09-1
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H. ISHIDA PHYSICAL REVIEW B 63 165409
exact shape of the original curvy surfaceSc , and there is no
need to separately calculate the contribution of the bu
spaceD to the overlap and Hamiltonian matrix elemen
Also, in performing a self-consistent surface embedded
culation, we will avoid explicitly treating the caps of th
boundary atoms. For example, with our method for calcu
ing the Hartree potential, it is not necessary to evaluate
tial multiple moments of the charge density in the cap reg
of the boundary atoms. As an application, numerical res
are presented for the low-index surfaces of the last threed
metals, Rh, Pd, and Ag.

The plan of the present paper is as follows. We desc
the method for generating the embedding potential of a se
infinite substrate in Sec. II and the method for performing
self-consistent Green-function calculation in the embed
surface region in Sec. III. Section IV contains results of
numerical calculation. A summary is given in Sec. V. Unle
stated otherwise, we use the Hartree atomic units wite
5m5\51 throughout this paper.

II. GENERATION OF THE EMBEDDING POTENTIAL

The idea behind the present method for generating
embedding potential of a semi-infinite substrate is similar
that in our previous work using pseudopotentials.13 In the
present work we treat an all-electron system and utilize
LAPW-like basis set instead of plane-wave-like basis fu
tions. First, we outline the present formalism, focusing
our method for avoiding explicitly treating the cap region
the MT spheres. Regarding numerical details, in order
avoid repetition, we describe only those parts specific to
use of the LAPW basis functions. Let us consider a thr
dimensional crystal with atomic layers piled up in thez di-
rection@Fig. 1~a!#. Two adjacent lattice planes are related
a translational vectord5(di ,dz), where di is in the xy
plane.19 We consider the Green functionG(r ,r 8) with en-
ergy e in the half-space to the left of the embedding surfa
Sc , which is called a ‘‘substrate.’’ To avoid overlappin
with the MT spheres of interface atoms,Sc is curved in a
complex way.20 G satisfies

@2D/21vb~r !2e#G~r ,r 8!52d~r2r 8!, ~1!

FIG. 1. Geometry for generating the embedding potential o
semi-infinite substrate.~a! Using a curvy embedding surface and~b!
the present formulation.
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wherevb denotes the bulk crystalline potential.G is assumed
to have zero normal derivative onSc and to fulfill the out-
going ~propagating or decaying toward the interior! bound-
ary condition atz52`. Using Green’s theorem, one ca
show

c~r !5
1

2ESc

dx G~r ,x!
]c~x!

]n
, ~2!

wherer is an arbitrary point in the substrate,x is onSc , n is
the surface normal inward to the substrate, andc is a solu-
tion of the Schro¨dinger equation with energye subject to the
outgoing boundary condition atz52`. The embedding po-
tential is defined by the inverse ofG overSc .12 By settingr
in Eq. ~2! on Sc , one has

]c~x!

]n
52E

Sc

dx8 GSc

21~x,x8!c~x8!, ~3!

which implies that the embedding potentialGSc

21 provides

generalized logarithmic derivative ofc on Sc . Now, we add
one more atomic layer on top of the substrate and defin
new embedding surfaceSc8 . Because of translational symme
try, the embedding potential onSc8 , GS

c8
21

, satisfies

GSc

21~x,x8!5GS
c8

21
~x1d,x81d!. ~4!

By definition,GS
c8

21
is the surface-inverse of the Green fun

tion with zero normal derivative onSc8 and subject to the
outgoing boundary condition atz52`. However, the
boundary condition atz52` can be replaced by Eq.~3! on
Sc . Thus, it is possible to concentrate on volumeV with a
finite thickness in order to evaluateGS

c8
21

. Crampinet al.17

pointed out that Eq.~4! can be utilized as a self-consiste
equation for determining the embedding potential itself17

Given an inputGSc

21, one calculates the Green function inV

that satisfies the boundary condition imposed by Eq.~3! on
Sc and has vanishing normal derivative onSc8 . Then,GS

c8
21

is

determined as the inverse ofG overSc8 . The left-hand side of
Eq. ~4! provides the output embedding potentialGSc

21, which

should coincide with the input one.
The scheme described above is not suitable for a prac

calculation because treating the curvy surfaces,Sc andSc8 , is
too complicated. In our formulation we set up two syste
@Fig. 1~b!#. In regionV1, we add a buffer volumeDL to the
left of Sc andDR to the right ofSc8 . In principle, the potential
energy inDL and DR can be chosen arbitrarily. It will be
specified later such that numerical work may be minimiz
The second systemV2 is made by removingV from V1 and
displacingDR by 2d. We simulate embedding onSc by the
embedding potential on an equivalent planar surfaceS,
GS

21 .21 In order to obtain a self-consistent equation for d
terminingGS

21 , we begin with a trial embedding potential o
S9, GS9

21 . Given the boundary conditionGS9
21 , we integrate

the Schro¨dinger equation fromS9 throughV2 to obtain the

a

9-2
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SURFACE-EMBEDDED GREEN-FUNCTION METHOD: A . . . PHYSICAL REVIEW B63 165409
\embedding potential onS, GS
21 . In the actual calculation, w

use the embedding technique to calculate the Green func
in V2 that satisfies the boundary conditionGS9

21 on S9 and
has zero normal derivative onS. The embedding potential o
S, GS

21 , is given by the inverse ofG over S. Next, we take
the sameGS

21 as input and integrate the Schro¨dinger equa-
tion from S throughV1 to yield the embedding potential o
S8, GS8

21 . The self-consistent condition for the correct em

bedding potential is given byGS9
21

5GS8
21 . This condition is

equivalent toGS
c9

21
5GS

c8
21

because the potential is the same

DR and DR8 . Furthermore,GS
c9

21
5GSc

21 , since we use the

sameGS
21 to integrate the Schro¨dinger equation fromS to

Sc (Sc9) through DL (DL8). Thus, the original equation~4!,

GSc

215GS
c8

21
, is reproduced.

Now, we specify the potential energy inDL andDR . If we
utilize the original bulk crystalline potentialvb in these
buffer volumes, the potential connects smoothly acrossSc

andSc8 . On the other hand, the MT spheres of the adjac
atomic layers are partially contained inDL and DR . In the
overlapped region,vb is expanded with spherical harmonic
and radial functions. This is inconvenient, since we like
expand the Green function inDL andDR using plane waves
alone. Hence, we need a model potentialvm that coincides
with vb in the interstitial region and is smooth enough insi
the MT spheres. Fortunately, such a potential energy is c
structed in the bulk FLAPW calculation to be perform
before the surface calculation. As for the exchan
correlation potential, one can utilize that corresponding
the plane-wave part of the charge density in the bulk ca
lation. Although this charge density has no physical mean
inside the MT spheres, the corresponding exchan
correlation potential can be calculated in the entire bulk u
cell. As proposed by Weinert,22 the interstitial part of the
Hartree potential is constructed in the bulk FLAPW calcu
tion by replacing true atomic charge densities in the M
spheres by smooth pseudocharge densities. The resu
Hartree potential is expanded in the entire bulk unit cell w
plane waves, and thus, suitable for the Hartree part of
model potentialvm . With the above definition ofvm , the
potential energy becomes smooth in the entire interst
volumeV12VMT (VMT denotes the volume corresponding
all the MT spheres contained inV). By virtue of this, the
potential matrix element inV12VMT can be calculated si
multaneously without summing up each contribution fro
DL , DR , and the interstitial region ofV separately. This
signifies that there is no need to specify the actual shap
the true embedding surfaceSc . One needs to specify onl
positions of the plane surfacesS and S8. S (S8) can be lo-
cated anywhere if the distance betweenS (S8) and the atoms
in volumeV is larger than their MT radii. With our choice o
vm , the potential energy in regionV2 becomes also continu
ous acrossSc9 becausevm has the translational symmetry o
the bulk crystal. Thus,vm is smooth in the entire volume o
V2.
16540
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In the following, we describe some more numerical d
tails. The Green function with energye and the two-
dimensional wave vectork can be expanded as

G~r ,r 8!5
1

A (
g,g8

exp@ i ~k1g!•x2 i ~k1g8!•x8#G~gz,g8z8!,

~5!

wherer5(x,z), A is the surface area, andg andg8 are two-
dimensional reciprocal lattice vectors corresponding to
Bravais lattice in the atomic plane. Similarly the embeddi
potential on the planar surfaceS is expanded as

GS
21~x,x8!5

1

A (
g,g8

exp@ i ~k1g!•x

2 i ~k1g8!•x8#GS
21~g,g8!. ~6!

In region V1 we calculate the Green function with zer
normal derivative onS8 and subject to the boundary cond
tion GS

21 on S. The Green function is expanded with a no
orthogonal basis set$x i% as

G~r ,r 8!5(
i ,i 8

Gii 8x i~r !x i 8
* ~r 8!. ~7!

In the interstitial regionV12VMT , the basis function is

x i~r !5A 2

AL
exp@ i ~k1g!•x#sin~pnz!, ~8!

where pn5np/L (n>1) and i stands for a set of indice
(g,n). x i is used in a shorter interval@b1 ,b2# instead of
@0,L# so that it can express the energy-dependent logarith
derivative of electron wave functions onS andS8 @see Fig.
2~a!#. Within the MT sphere of thea-th atom atra ,

x i~r !5(
l ,m

@Almul~r !1Blmu̇l~r !#Ylm~r2ra!, ~9!

where r 5ur2rau, ul is the radial solution of the scalar
relativistic Koelling-Harmon equation23 at reference energy
ea l , andu̇l denotes its energy derivative.ul has the large and
small components and it is assumed that the small one
ishes at the MT radiusr 5Ra . Alm andBlm are chosen such

FIG. 2. Geometry and embedding parameters for generating
embedding potential of a semi-infinite substrate.~a! RegionV1 and
~b! regionV2.
9-3
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H. ISHIDA PHYSICAL REVIEW B 63 165409
that the large component ofx i and its radial derivative con
nect continuously to the plane wave part~8! at r 5Ra .15

Gii 8 in Eq. ~7! is calculated asGii 85@eS2H# i i 8
21 , where

Sii 8 and Hii 8 are the overlap and Hamiltonian matrices, r
spectively.Hii 8 consists of three terms, i.e.,

Hii 85t i i 81v i i 82~GS
21! i i 8 , ~10!

where the matrix element of the embedding potential, wh
is absent in standard slab calculations, is

~GS
21! i i 85

2

L
GS

21~g,g8!sin~pnb1!sin~pn8b1!. ~11!

Regarding the free-electron partt i i 8 , the contribution from
the interstitial is 1

2 *V12VMT
dr “x i* (r )•“x i 8(r ), while a

standard scalar-relativistic treatment should be made in
the MT spheres.15,23 Finally, the matrix element of the po
tential energy is calculated as

v i i 85E
V12VMT

dr x i* ~r !vm~r !x i 8~r !

1E
VMT

dr x i* ~r !vb~r !x i 8~r !. ~12!

From Gii 8 , we evaluate the Green function onS8 (z5b2).
The embedding potential onS8, GS8

21(g,g8), is simply given
by the inverse of the matrixG(gb2 ,g8b2).

The calculation in regionV2 proceeds in a similar way
We employ a plane-wave-like basis set in the same form
Eq. ~8!. In the present case,pn5np/L8 (n>1) and it is
utilized in the interval@b18 ,b28# @see Fig. 2~b!#. In V2 no
augmentation of the basis functions is necessary. We ca
late the Green function with zero normal derivative onS (z
5b18) and subject to the boundary conditionGS9

21 on S9 (z
5b28). The Hamiltonian matrix has three terms, i.e.,Hii 8
5t i i 81(vm) i i 81(GS9

21) i i 8 . The last term has an opposi
sign with the corresponding one in Eq.~10!, since the surface
normaln points toward the substrate (n52z) in our defini-
tion, whereas, in the embedding Hamiltonian, one should
n outward from the embedded region (n5z). By the same
reason, the output embedding potential onS (z5b18),
GS

21(g,g8), is given by the inverse of2G(gb18 ,g8b18).
To reach self-consistency, we begin with some inp

GS9
21 . In V2, we calculateGS

21 . Taking the sameGS
21 as

input, we work inV1 to calculateGS8
21 . The self-consisten

condition ~4! is written in the present case as

GS9
21

~g,g8!5exp~ ig•di!GS8
21

~g,g8!exp~2 ig8•di!.
~13!

The left-hand side of Eq.~13! is mixed with the original
input GS9

21 to generate the next input potential onS9. We use
a higher-dimensional Anderson method reformulated
Blügel24 for the mixing procedure.
16540
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III. SURFACE EMBEDDING CALCULATION

We perform a self-consistent Green-function calculat
in the surface region embedded between the semi-infi
substrate and the vacuum. In accordance with the geom
in Sec. II, we introduce a planar embedding surfaceS (z
5b1) and a buffer volumeDL ~Fig. 3!. In DL we use the
smooth model potentialvm . The Green function is expande
by a nonorthogonal basis set in the same form as Eqs.~8! and
~9!. In the present case, the embedding potential onS8 (z
5b2) expresses the effects of the semi-infinite vacuum. T
embedding potential onS8 is given as

GS8
21

~g,g8!52
i

2
dgg8A2~e2ev!2uk1gu2, ~14!

whereev denotes the vacuum level, which should be det
mined self-consistently. The surface Green function is cal
lated asGii 85@eS2H# i i 8

21 , where

Hii 85t i i 81v i i 82~GS
21! i i 81~GS8

21
! i i 8 , ~15!

~GS8
21

! i i 85
2

L
GS8

21
~g,g8!sin~pnb2!sin~pn8b2!. ~16!

The first three terms in Eq.~15! have the same form as th
corresponding ones in Eq.~10!. From the Green function, the
output charge density is calculated as

n~r !5
22

p
ImE eF

deE
SBZ

dk

~2p!2
G~e,k,r ,r !, ~17!

where we explicitly expressed the dependence of the Gr
function one andk.25 In Eq. ~17! the summation overk is
taken in the surface Brillouin zone~SBZ! and the energy
integration is performed along a complex contour, (e0,0)
→(e0 ,G)→(eF ,G)→(eF,0), wheree0 is below the bottom
of the bulk bands,G51;2 eV, andeF denotes the Ferm
level, which should be imported from the preceding bu
calculation in case of metallic systems. With the present
sis set, the charge densities in the interstitial region and
side the MT sphere of theath atom are expanded, respe
tively, as

n~r !5(
g,n

n~g,n!exp~ ig•x!cos~pnz!, ~18!

FIG. 3. Geometry and embedding parameters for a surfa
embedded Green function calculation. The potential energy is
termined self-consistently to the right ofSp .
9-4
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SURFACE-EMBEDDED GREEN-FUNCTION METHOD: A . . . PHYSICAL REVIEW B63 165409
n~r !5(
n

Kan~r2ra!nan~r !, ~19!

where pn5np/L (n>0) and Kan are lattice harmonics o
the a site. It is to be noted that Eq.~18! is physically mean-
ingful only in the space betweenSc and S8. The output
charge density is mixed with the input one to generate
next input charge density. The iteration procedure is con
ued until the self-consistency in charge density is achiev

Since the charge density given by Eqs.~18! and ~19! has
three-dimensional periodicity~the artificial lattice constant in
the z direction is 2L), one may use any method used
standard bulk calculations for evaluating the exchan
correlation potentialvxc . On the other hand, calculating th
Hartree potentialvh is more complicated because of th
boundary condition on the bulk side. In the first step,
replace the electron density~19! and the point nuclear charg
in the MT spheres by a smooth model charge density us
Weinert’s method.22 The resultant model charge densityñ(r )
can be expanded in the same form as Eq.~18!. We introduce
a planez5bq slightly to the left of the true embedding su
face Sc and consider the solution of the Poisson equati
Dw̃(r )524pñ(r ), in the interval@bq ,b2#. The solution for
nonzerog components is

w̃~g,z!5
2

ugu Ebq

b2
dz8 exp~2uguuz2z8u! (

n>0
ñ~g,n!cos~pnz8!

5 (
n>0

4pñ~g,n!

pn
21ugu2

cos~pnz!1w̃q exp@2ugu~z2bq!#

1w̃2 exp@2ugu~b22z!#. ~20!

For g50, it is possible to write the Hartree potential in th
form,

w̃~g50,z!5 (
n>1

4p

pn
2 @ ñ~g50,n!1cqnq~n!

1c2n2~n!#cos~pnz!, ~21!

wherenq(n) and n2(n) are the Fourier components of th
model charge densities that are normalized to unity and
calized in@0,bq# and @b2 ,L#, respectively. The coefficient
cq and cw are chosen such thatw̃ satisfies the boundar
conditiondw̃(g50,z)/dz50 at the vacuum (z5b2). The ex-
pressions forw̃q , w̃2 , cq , andc2 as well as an example o
the functional form of the model charge densities,nq(z) and
n2(z), are given in Ref. 13.

The solution given above is not yet complete, sincew̃
does not satisfy the correct boundary condition on the b
side. Thus, as a correction, we add a solution of the Lap
equation,f̃, to w̃. f̃ is determined such thatṽh5w̃1f̃ con-
nects continuously to the bulk Hartree potential on the
tential boundary surface to the bulk,Sp .26 In the previous
work using pseudopotentials,13 we considered asSp a plane
surfacez5bp located slightly on the surface side ofSc .
Unfortunately, with the LAPW scheme, this plane cuts t
16540
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MT spheres of atoms in the innermost surface layers
shown in Fig. 3. Thus, we need to introduce a new bound
surfaceSp : If the planez5bp intersects the MT sphere of
boundary surface atom,Sp is chosen as the cap surface
this MT sphere on the left-hand side ofz5bp , whereasSp is
chosen as the planez5bp itself outside the MT spheres. Th
resultantSp has a bumpy shape. But it is easy to determinef̃
as explained below.

First, we evaluate the bulk Hartree potentialvh minus w̃

on Sp as the boundary condition off̃ on Sp . For z>bp , f̃
can be written as

f̃~r !5(
g

f̃~g!exp@2ugu~z2bp!#. ~22!

Diverging and linear terms are missing from Eq.~22! be-
cause they do not satisfy the boundary condition at
vacuumz5b2. The coefficientf̃(g) can be determined a
the g component off̃(r ) on the planez5bp . The value of
f̃(r ) on z5bp is given as the boundary condition ifr is
located outside the MT spheres of boundary surface ato
whereas it is not known when the planez5bp is contained in
the MT spheres. Thus, we adopt an iterative scheme
assume some input values forf̃(g). Next, we consider the
MT sphere of a boundary surface atom centered atra . Inside
the sphere,f̃ can be expanded as

f̃~r !5(
l ,m

f̃ lmYlm~r2ra!S ur2rau
Ra

D l

. ~23!

The coefficientf̃ lm is determined as the (l ,m) component of
f̃(r ) on the MT surface. To the left ofz5bp , f̃(r ) on the
sphere surface is known as it is a part ofSp . To the right of
z5bp , f̃(r ) can be evaluated using Eq.~22!. Thus, it is
possible to determinef̃ lm from Eq. ~22!. Then, using Eq.
~23!, one evaluatesf̃(r ) on the circular intersection of the
MT sphere and the planez5bp . Since the value off̃(r ) is
now known on the entire surface ofz5bp , one can deter-
mine the output values off̃(g), which should be mixed with
the inputf̃(g) until self-consistency is obtained.

So far, we have obtained the Hartree potentialṽh5w̃h

1f̃h corresponding to the model charge densityñ(r ) in the
volume to the right ofSp . The true Hartree potentialvh

coincides withṽh in the interstitial region. Inside the MT
spheres,vh can be calculated with the use of the same p
cedure as in a standard bulk FLAPW calculation: One in
grates the Poisson equation on radial mesh points using
true MT charge density~19! such that it becomes continuou
on the MT surface.15 Finally, we comment on the calculatio
of the potential matrix elementv i i 8 in Eq. ~15! in the inter-
stitial region. As the potential energy, we use the model
tential vm on the left-hand side ofSp and the self-consisten
potentialvs5vxc1vh on the right-hand side ofSp . SinceSp
has a bumpy shape, if the two contributions are calcula
separately, one must explicitly treat the cap region of
boundary atoms, which is numerically time consuming.
9-5
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avoid this, we employ the same real space technique as
in bulk FLAPW calculations.15 Namely, we evaluate
vs(r )Q(r ) @vm(r )Q(r ) on the substrate side ofSp] on the
real space mesh points, where we choose 2L as an artificial
period in thez direction andQ(r ) denotes a step functio
which equals unity in the interstitial region and zero insi
the MT spheres. By performing a fast Fourier transform,
potential energy times the step function is expanded in
same form as Eq.~18!. Using the basis functions of the form
~8!, the matrix element can be calculated very easily.

IV. RESULTS OF NUMERICAL CALCULATIONS

As a test of the present method, we perform a s
consistent electronic-structure calculation for the~001! and
~111! clean surfaces of Rh, Pd, and Ag. All of them form
fcc lattice in the bulk. In the first step we calculate their bu
electronic structure at an experimental lattice constant u
a standard bulk FLAPW code, from which we obtain t
Fermi leveleF and the bulk potentialvb . We also construct
the smooth model potentialvm from vb . Second, we gener
ate the embedding potential of a semi-infinite metal fo
given set ofk points and energy mesh points following th
procedure described in Sec. II. In the third step, we cond
a self-consistent surface-embedded Green-function calc
tion using the method described in Sec. III. In the pres
work we do not consider the relaxation of surface atom
layers, and the spacing between the neighboring lat
planes is set equal to the bulk value. In the calculation,
outermost lattice planes are included in the surface emb
ded region and the effects of the rest of the substrate
expressed by the embedding potential. For example,
Ag~001!, the embedding parameters defined in Fig. 3
chosen as b151.5 a.u., bq52 a.u., bp53.3 a.u., b2
519 a.u., andL520.5 a.u. Regarding atomic paramete
the MT radiusRs52.64 a.u., and the first and second latti
planes are located atz58.26 and 4.42 a.u., respectively. Th
distance betweenz5b1 and the second Ag layer, 2.92 a.u.,
therefore slightly larger thanRs to allow for the space for the
buffer volumeDL . In expanding the Green function insid
the MT spheres, the maximum angular momentum for
basis functions~9! is l max59, whereas the plane-wave cuto
energy for the basis functions in the interstitial is chosen
10.2 Ry. We use the Ceperley-Alder27 exchange-correlation
potential within the local density approximation~LDA !.

In Fig. 4 we show contour maps of the calculated cha
densities on a vertical cut-plane containing atoms in the
layer and their nearest-neighbors in the second atomic l
for the ~001! surfaces of Ag, Pd, and Rh. Figure 5 show
similar charge contour maps for their~111! surfaces. The
thick dashed lines in these figures indicate positions of
potential boundary surface,Sp . On the surface side ofSp ,
we plot the self-consistent charge densities determined
the present surface-embedded Green-function met
whereas charge densities of the fcc crystals calculated w
bulk FLAPW code are plotted on the substrate side ofSp . It
is seen that the charge density connects very smoothly ac
Sp , which signifies that our embedding potential simula
the effects of the semi-infinite crystal excellently. In th
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present calculational method, the Hartree potentialvh is con-
structed such thatvh becomes continuous acrossSp . But we
impose no boundary condition on the exchange-correla
potentialvxc on Sp . Thus,vxc is discontinuous acrossSp at
the initial stage of the iteration procedure. Nevertheless,
see from Figs. 4 and 5 that the continuity ofvxc also holds
well when the self-consistency in charge density is achiev
The charge-density maps of three metals look qualitativ
very similar to one another for both the~001! and ~111!
surfaces. Looking more carefully, one notices that the cha
density in the interstitial region decreases slightly with
creasing atomic number reflecting a larger lattice cons
and more localizedd orbitals.

The work function of a metal,F, can be calculated as th
difference between the vacuum level and the Fermi ene
ev2eF . The calculated values ofF are listed in Table I. For

FIG. 4. Total charge density on a vertical cut plane contain
atoms in the top layer and their nearest neighbors in the sec
layer for ~a! Ag~001!, ~b! Pd~001!, and ~c! Rh~001!. The lowest
contour level is 531024 a.u. and it increases successively by
factor of 101/8. Arrows indicate directions toward which the charg
density increases. Dashed lines indicate the crosscut of boun
surfaceSp . The distance between neighboring ticks is 2 a.u.
9-6
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Ag~001!, the previous slab-FLAPW calculations report
4.74 eV28 and 4.60 eV,29 while the previous embedding ca
culations predictedF54.95 eV30 and 4.67 eV.31 They scat-
ter in a range of a few tenths of eV due to different numeri
parameters. Also, different choice in the functional form
the exchange-correlation potential leads to a difference inF
of ;0.1 eV. For Ag~111!, our value 4.97 eV is in good
agreement with 5.0 eV of Skriver and Rosengaard, who p
formed a comprehensive study of work functions for the
~111! and bcc~110! surfaces of all the 3d, 4d, and 5d met-
als using their Green-function technique based on the ti
binding linearized-muffin-tin-orbital~LMTO! method.32 For
Pd, the present results are in good agreement with the re

FIG. 5. As in Fig. 4, but for~a! Ag~111!, ~b! Pd~111!, and ~c!
Rh~111! surfaces.

TABLE I. Calculated work functions of Ag, Pd, and Rh~eV!.

Rh Pd Ag

~001! 5.74 5.73 4.80
~111! 5.72 5.74 4.97
16540
l
f

r-
c
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ent

LDA values of Heinrichsmeieret al. calculated with a
mixed-basis pseudopotential method within the slab appr
mation, i.e., 5.68 eV for Pd~001! and 5.75 eV for Pd~111!.33

They also calculated the work functions with a nonloc
exchange-correlation potential, which were, however,
;0.4 eV larger than their LDA values. With the generaliz
gradient approximation~GGA!, Pallassanaet al.34 predicted
a smaller value,F55.42 eV for Pd~111!, which is in better
agreement with recent measurementsF55.4460.03 eV
~Ref. 35! and 5.5060.01 eV.36 Finally, our work function
for Rh~111! is in fair agreement with 5.8 eV of Skriver an
Rosengaard.32 For an isolated Rh~001! monolayer, Wu and
Freeman29 obtainedF55.77 eV, which is fortuitously very
close to our semi-infinite value.

One important advantage of the semi-infinite geometry
that it can describe localized surface states~SS! and surface
resonances~SR! accurately. Especially, when ansp-like sur-
face state appears near the edge of a projected bulk band
its wave function decays rather slowly toward the interior
the metal. It is difficult to treat such a SS with the standa
slab approximation. Surface states on the~001! surfaces of
noble and transition metals were previously studied by
embedding technique.16,18,30 For Ag~001! we obtained a
good agreement with the calculation of Aers a
Inglesfield.30 Hence, in the present paper, we show resu
for the ~111! surfaces.

We define thek-resolved atomic density of states~DOS!
by

r~e,k!52
1

pE dr Im G~e1 id,k,r ,r !, ~24!

where the volume integral is done in a MT sphere andd is an
infinitesimal positive number. Solid lines in Fig. 6~a! show
the calculated DOS of a top-layer atom for Ag~111! at fourk

points along theḠ-K̄ line in SBZ.37 Also shown by dashed
lines is the contribution of thep ( l 51) orbitals tor(e,k). In
calculating the DOS,d in Eq. ~24! was replaced by a sma
positive numberh5531024 a.u. in order to avoid the SS
poles on the real energy axis. The width of SS peaks in
figure is therefore just an artifact ofh. It is well known that
the Ag~111! surface has a partially filled Shockley-type SS
the projectedsp-band gap near the center of SBZ. Kevan a
Gayloard38 investigated this state by angle-resolved pho
emission spectroscopy and obtainedE0520.12 eV as its

binding energy relative toeF at Ḡ. In Fig. 6~a! the SS peak is

located at20.11 eV beloweF at Ḡ in good accord with their
experiment. This state is dominantlyp-like in orbital charac-
ter and has a parabolic energy dispersion at smallk. The
calculated effective massm* 50.37 a.u. is smaller thanm*
50.53 a.u. deduced from the inverse photoemiss
spectra.38 We also see from Fig. 6~a! that the energy differ-
ence between the SS peak and the upper edge of the
jected sp bulk band ~indicated by vertical bars! decreases
with increasing wave number. In the uppermost curve co
sponding touku50.4 a.u., the SS merges into the project
band and appears as a surface resonance. We emphasiz
9-7
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such a transition from a true SS to a SR is difficult to analy
with the standard slab approximation.

Figure 6~b! shows the top-layer atomic DOS for Pd~111!.
Very recently, energy positions and lifetimes of the unoc
pied Schockley states and image-potential states on Pd~111!
were studied by two-photon photoemission~2PPE! spectros-
copy by Scha¨fer et al.36 In order to calculate the image
potential states, one must replace the embedding pote
~14! on the vacuum side by that corresponding to the im
potential (}21/z).39 As the aim of the present calculation
just to test our new calculational scheme, instead of doing
we focus on Schockley states in this work. Scha¨fer et al.36

also analyzed measured lifetimes of the surface states us
one-dimensional model and the GW approximation.
present, it is too complicated to perform such a GW cal
lation using a fully three-dimensional Green function as o
tained in the present work. On Pd~111!, an unoccupied

FIG. 6. Atomic density of states,r(e,k), for top-layer surface

atoms alongḠ2K̄ line in SBZ ~solid lines!. Dashed lines show the
p component ofr(e,k). ~a! Ag~111!, ~b! Pd~111!, and~c! Rh~111!.
Small numbers near each line indicate the wave numberuku in
atomic units. Vertical bars are the upper edge of the projec
sp-bulk band. The imaginary part of energyh5531024 a.u.
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Shockley-type surface band near the center of SBZ w
predicted by Louie40 and observed via inverse photoemissi
spectroscopy by Hulbertet al.41 Its energy atḠ was found to
be 1.3 eV above the Fermi level. More recent 2PPE exp
ments reported similar values, 1.2660.03 eV ~Ref. 35! and
1.3560.02 eV.36 In the present calculation, the correspon
ing Shockley state appears slightly at a lower position, i.e.
1.15 eV aboveeF at Ḡ. As in the case of Ag~111!, this state
has a strongp character and a parabolic energy dispersi
Its effective massm* 50.18 a.u. is in fair agreement with
recent theoretical value of Heinrichsmeieret al., m* 50.22,
but is much smaller than that determined by inve
photoemission,41 m* 50.35 a.u. In Fig. 6~b! we find the
second SS peak at 0.2 eV aboveeF at Ḡ. This state, which is
located slightly above the upper edge of the bulk 4d band
(L3), is twofold degenerate and predominantly made od
orbitals. Although it couples with projected bulk band
and becomes a SR except atḠ, its interaction with them is
relatively weak and it remains a noticeable peak along
Ḡ-K̄ direction having a much smaller energy dispersion th
the p-like SS. Hulbertet al.41 observed a large peak imme
diately above the Fermi level in their inverse photoemiss
spectra from Pd~111! and assigned the peak as originati
from the unoccupiedd band. It may be likely that the pea
corresponds to thed-like surface state.

We show in Fig. 6~c! the atomic DOS for the top-laye
atom of Rh~111!. As in the case of Pd~111!, the p-like SS
and d-like SS appear atḠ aboveeF . As the upper edge o
the bulk 4d band (L3) and that of thesp band (L28) are
close to each other for Rh, both are located at 0.9 eV ab
the Fermi level and we observe only a single large peak

FIG. 7. Energy dispersion of thep-like surface state along

Ḡ-K̄ for the ~111! surface of Ag, Pd, and Rh. Lines between sym
bols are guides for eyes.

d
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Fig. 6~c!. Thed-like state becomes broader with increasingk
keeping its energy position nearly unchanged. By a s
consistent linear combination of atomic orbitals~LCAO! cal-
culation, Feibelman42 studied the electronic structure of a
11-layer Rh~111! slab and found a SS at;1 eV above the
Fermi level at the center of SBZ. The orbital character of t
state was not mentioned in that work. In Fig. 7 we summ
rize the energy dispersion of thep-like surface state at sma
uku along theḠ-K̄ direction for the three metals. For Rh, i
dispersion deviates from a quadratic behavior even at s
uku and is difficult to fit by a single effective mass.

Before closing this section, we comment on total ener
We are planning to implement subroutines to compute
total energy of the system with the embedding method.
the other hand, the total energy and atomic forces of s
surfaces can be calculated rather accurately even with a
slab in most cases. Thus, a more practical way might b
optimize the atomic geometry with an existing slab code
first and to use that geometry in the subsequent semi-infi
Green-function calculation. This does not negate the imp
tance of semi-infinite methods, since there are a wide var
of problems that can be studied only using truly semi-infin
geometry.
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V. SUMMARY

We have presented a method for calculating the Gr
function of semi-infinite crystal surfaces using the LAP
basis set and the embedding approach of Inglesfield.
method comprises two independent steps: First, the em
ding potential of a semi-infinite substrate is generated fr
the bulk crystalline potential. Second, a self-consistent s
face Green-function calculation is performed in the emb
ded surface region. The great advantages of the pre
method over the previous ones are~i! that there is no need to
specify the exact shape of the true embedding surf
throughout the calculation, and~ii ! that one does not need t
treat separately the caps of the muffin-tin spheres of
boundary surface atoms. By virtue of them, the amount
numerical work for performing a self-consistent surfac
embedded calculation can be reduced to the same leve
that in a standard bulk FLAPW calculation. As a test, w
performed a self-consistent electronic structure calcula
for the~001! and~111! clean surfaces of Rh, Pd, and Ag. W
have studied the charge density, work functions, and the
face states of these surfaces.
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8P. Krüger and J. Pollmann, Phys. Rev. B38, 10 578~1988!.
9H. L. Skriver and N. M. Rosengaard, Phys. Rev. B43, 9538

~1991!.
10V. S. Stepanyuk, W. Hergert, K. Wildberger, R. Zeller, and P.

Dederichs, Phys. Rev. B53, 2121~1996!.
11A. Liebsch, Electronic Excitations at Metal Surfaces~Plenum,

New York, 1997!, p. 40.
12J. E. Inglesfield, J. Phys. C14, 3795~1981!.
13H. Ishida, Surf. Sci.388, 71 ~1997!.
14D. Vanderbilt, Phys. Rev. B41, 7892~1990!.
15For numerical details of the LAPW method for bulk crystals, s

for example, D. J. Singh,Planewaves, Pseudopotentials, and t
LAPW Method~Kluwer Academic, Norwell, 1994!.

16J. E. Inglesfield and G. A. Benesh, Phys. Rev. B37, 6682
~1988!.

17S. Crampin, J. B. A. N. van Hoof, M. Nekovee, and J.
Inglesfield, J. Phys.: Condens. Matter4, 1475 ~1992!; S.
Crampin, M. Nekovee, J. B. A. N. van Hoof, and J.
Inglesfield, Surf. Sci.287Õ88, 732 ~1993!.

18J. B. A. N. van Hoof, thesis, Catholic University of Nijmege
1997.
.

,

19For a bulk crystal withNa atoms in a unit cell, volumeV should
containNa atomic layers.

20Sc may be chosen as a plane if the MT spheres are small eno
However, this increases the plane-wave part of the numer
work and ruins the advantages of the LAPW basis set.

21Given a wave function subject to the boundary conditionGSc

21 on
Sc , c, one integrates the Schro¨dinger equation throughDL . The
embedding potential onS, GS

21 , is defined such that it gives
logarithmic derivative ofc on S.

22M. Weinert, J. Math. Phys.22, 2433~1981!.
23D. D. Koelling and B. N. Harmon, J. Phys. C10, 3107~1977!.
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