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Surface-embedded Green-function method: A formulation using a
linearized-augmented-plane-wave basis set
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We present a first-principles method for calculating the Green function of a semi-infinite crystal surface
using the embedding technique of Inglesfield and the linearized-augmented-pland-wBV¥) basis set. The
calculation consists of two independent stefi$:The embedding potential of a semi-infinite substrate is
generated from the bulk crystalline potential, diidl a self-consistent surface Green function calculation is
performed in the embedded surface region. The numerical advantages of our method over the previous ones are
(i) that one does not need to determine the exact shape of the curvy embedding surface between the bulk and
surface regions an@) that there is no need to explicitly treat the cap reg@portion of the muffin-tin sphere
cut by a plang of boundary atoms near the embedding surface. By virtue of them, the total amount of
numerical work for performing a surface-embedded Green function calculation is reduced nearly to the same
level as that in standard surface electronic-structure calculations within the slab approximation. As an example,
we calculate the electronic structure of #t@®1) and(111) surfaces of Rh, Pd, and Ag.
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[. INTRODUCTION pseudopotential of Vanderbilf.Instead, in the present work,
we adopt linearized-augmented-plane-wat&\PW) basis
Methods for calculating the electronic structure of crystalfunctions!® The surface embedding method combined with
surfaces are divided into two groups. In the first one, théhe LAPW basis set was originally developed by Inglesfield
surface is modeled by a thin slab consisting~ef0 atomic ~ and Benesh® In that work, the surface region was treated
layers. Combined with Car-Parrinello—like iterative With the full-potential LAPW (FLAPW) scheme, whereas
techniqueg, the slab geometry has been utilized extensivelythe embedding potential of the substrate was generated using
for first-principles total energy calculations of solid surfaces 2 Standard layer Korringa-Kohn-RostokeKKR) technique
In the second group, the surface is treated as a semi-infinitithin the MT potential approximatioh. More  recently
system. As an advantage, the semi-infinite method can fu"framplnet al. proposed a full-potential scheme for generat-
describe the three-dimensional electronic band structure in ‘a9 _the embeddlng potential of_a seml-!nflmte substrate
within the embedding approach itséff.Their formulation

bulk crystal, which is essential for treating scattering prob-Was cast into a scattering theory and incarnated in an

lems such as photoemission and for studying Fermi'surfaCELAPW-based surface Green-function code by van Héve
properties such as surface resistivity. The semi-infinite methl—n the present work, we aim at developing a computation.al

ods are fu_r7ther classified into thqse computing electron WavE athod which enables us to perform a surface Green-
funct!on§ and those treating the surface Greengnciion calculation at the same level of accuracy as that of
function®~12 The Green-function approach is suitable foryan Hové® with significantly less numerical work.
ground-state electronic-structure calculations, since the The surface embedded Green-function calculation con-
charge density can easily be calculated by performing a corkjsts of two independent procedures. First, the embedding
tour integral in the complex energy plane. Most of the surpotential of a semi-infinite substrate is generated from the
face Green-function methods are based on the Dyson equBulk crystalline potential. Second, a self-consistent
tion, where the Green function of a bulk crystal is computedelectronic-structure calculation is performed in the surface
as an unperturbed systém? For systems with simplified embedded region. Our method has the following advantages
one-dimensional or muffin-tifMT) potentials, the Green in each step. Regarding the generation of the embedding po-
function can be constructed directly from the solutions of thetential, if the embedding surface on the substrate side is cho-
Schralinger equatiod! The embedding method of sen as a plane, it intersects MT spheres of the boundary
Inglesfield? is unique in its formulation. In his method, one atoms. By adding the caia small portion of a MT sphere
considers a surface region with a finite thickness embeddecut by the plangof atoms on the surface side and removing
between the semi-infinite substrate and the vacuum, and thetinose of atoms on the bulk side, one can define a surface
effects on the surface are taken into consideration via comembedded region that does not cut the MT spheres. The re-
plex potential energies acting on the embedding surfaces asultant embedding surfa& , however, has a bumpy shape,
the substrate and vacuum sides. which is numerically too complicated to treat. As was shown
Recently we developed a surface-embedded Greerby Crampinet al,'’ the embedding 0, can be transmitted
function code using a plane-wave-like basis set and théo embedding on an equivalent plane surf&ewhich is
norm-conserving pseudopotentfIA possible extention of separated fronS, by a nonphysical buffer spack. In our
the method toward handling thepZow elements and tran- method, the self-consistent equation for determining the em-
sition metals may be to represent ion cores by the ultrasotbedding potential oi$ can be derived without specifying the
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(a) (b) wherev,, denotes the bulk crystalline potentiél.is assumed
Vv, v, to have zero normal derivative d® and to fulfill the out-
going (propagating or decaying toward the intejitmound-
ary condition atz=—. Using Green’s theorem, one can
A) o8k AL show
S @ s | (o w=5 [ axcrn i, @
Se n
Se) (Se Se
wherer is an arbitrary point in the substratejs onS., nis
@ S S" the surface normal inward to the substrate, @nid a solu-

tion of the Schrdinger equation with energy subject to the

outgoing boundary condition at= —«~. The embedding po-
FIG. 1. Geometry for generating the embedding potential of atential is defined by the inverse 6 overS..'? By settingr

semi-infinite substratéa) Using a curvy embedding surface afil  in Eq. (2) on S;, one has

the present formulation.

&l/j(x) ! - ! !
exact shape of the original curvy surfaSg, and there is no an :ZL dx GScl(X'X )(X), )
need to separately calculate the contribution of the buffer ‘
spaceA to the overlap and Hamiltonian matrix elements.which implies that the embedding potent'ﬁlgl provides
Also, in performing a self-consistent surface embedded calyeneralized logarithmic derivative gfon S,. NCC,W, we add
culation, we will avoid explicitly treating the caps of the one more atomic layer on top of the substrate and define a

poundary atoms. For gxample, with our method for calculaty,gy, embedding surfac® . Because of translational symme-
ing the Hartree potential, it is not necessary to evaluate pa;

. , , A o
tial multiple moments of the charge density in the cap regionry’ the embedding potential GSQ , satisfies

of the boundary atoms. As an application, numerical results .

are presented for the low-index surfaces of the last thike 4 chl(x,x’)=GS, (x+d,x" +d). (4
metals, Rh, Pd, and Ag. ¢

The plan of the present paper is as follows. We describgy definition, G, is the surface-inverse of the Green func-
[

the method for generating the embedding potential of a semi- . o , ]
infinite substrate in Sec. Il and the method for performing alion With zero normal derivative o, and subject to the
self-consistent Green-function calculation in the embedde@utgoing boundary condition ag=-—c«. However, the
surface region in Sec. lll. Section IV contains results of thePoundary condition at= —c can be replaced by E¢3) on
numerical calculation. A summary is given in Sec. V. UnlessSc- Thus, it is possible to concentrate on volufilewith a
stated otherwise, we use the Hartree atomic units ith finite thickness in order to evalua®, . Crampinet al.*’

— — — H Cc
=m=#=1 throughout this paper. pointed out that Eq(4) can be utilized as a self-consistent

equation for determining the embedding potential itSelf:
Il. GENERATION OF THE EMBEDDING POTENTIAL Given an inputchl, one calculates the Green function{i

The idea behind the present method for generating thiat satisfies th.e ?Oundafy cond-itior.] imposed by (B_ml-o_”
embedding potential of a semi-infinite substrate is similar toSc and has vanishing normal derivative 8f. Then,GSé is

that in our previous work using pseudopotentidisn the  getermined as the inverse GfoverS,. . The left-hand side of

present work we treat an all-electron system and utilize th% 4) provides the output embeddina potent@l L which
LAPW:-like basis set instead of plane-wave-like basis func- a.(4)p P gp ﬁgc '

tions. First, we outline the present formalism, focusing onShould coincide with the input one. _ _
our method for avoiding explicitly treating the cap region of The scheme described above is not suitable for a practical

the MT spheres. Regarding numerical details, in order tgalculation because treating the curvy surfaGsandsS; , is
avoid repetition, we describe only those parts specific to thé20 complicated. In our formulation we set up two systems
use of the LAPW basis functions. Let us consider a threelFig. 1(b)]. In regionV,, we add a buffer voluma, to the
dimensional crystal with atomic layers piled up in theli-  left of S; andAg to the right ofS¢ . In principle, the potential
rection[Fig. 1(a)]. Two adjacent lattice planes are related byenergy inA; and Ag can be chosen arbitrarily. It will be
a translational vectod=(dy,d,), whered, is in the xy specified later such that numerical work may be minimized.
planel® We consider the Green functid®(r,r’) with en-  The second systei, is made by removing) from V; and
ergy e in the half-space to the left of the embedding surfacedisplacingAg by —d. We simulate embedding d8, by the

S., which is called a “substrate.” To avoid overlapping €mbedding potential on an equivalent planar surf&e
with the MT spheres of interface aton, is curved in a Ggs'.? In order to obtain a self-consistent equation for de-

complex way’° G satisfies terminingGg1 , we begin with a trial embedding potential on
', Gg' . Given the boundary conditioB ", we integrate
[—A2+vy(r)—€e]G(r,r")==68(r—r"), (1)  the Schrdinger equation fron8” throughV, to obtain the
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\embedding potential 08, Ggl. In the actual calculation, we (a) (b)

use the embedding technique to calculate the Green function S S, S.S’ s s
in V, that satisfies the boundary conditi@y," on " and '
has zero normal derivative & The embedding potential on
S Ggl, is given by the inverse o6 over S Next, we take
the sameGg1 as input and integrate the Schinger equa-
tion from S throughV; to yield the embedding potential on
s, Gg,l. The self-consistent condition for the correct em-

. i i . _ _ . . . L ) 3 H
bedding potential is given b@s,,1=GS,1. This condition is 0 by b, 0 by b L
equivalent th;,lZ G;,l because the potential is the same in  FIG. 2. Geometry and embedding parameters for generating the

, ¢ ¢ 1 1 embedding potential of a semi-infinite substrdg.RegionV, and
Ag and Ag. Furthermore,Gg =Gg ™, since we use the () regionv,
c ¢ :

sameGg1 to integrate the Schdinger equation fronS to ) . )
S, (S!) throughA, (A}). Thus, the original equatiofd), In the following, we describe some more numerical de-

Glog ! duced tails. The Green function with energy and the two-
s, ~ g » IS reproduced. dimensional wave vectdt can be expanded as
Now, we specify the potential energyd andAg. If we
utilize the original bulk crystalline potentiab,, in these o1 : : ot o
=— +0)-X— + .
buffer volumes, the potential connects smoothly act8ss Gr.r') A gzg exitk+g)-x-itk+g)-x']G(gz.9'2"),
and S, . On the other hand, the MT spheres of the adjacent (5

atorrluc Iayders are pa_rtlally Cogt?jlne_dhm ;md_A?'h In the_ wherer=(x,z), Ais the surface area, amdandg’ are two-
overlapped regiony, Is expanded with spherical harmonics gimensional reciprocal lattice vectors corresponding to the
and radial functions. This is inconvenient, since we like togavais lattice in the atomic plane. Similarly the embedding

expand the Green function iy, andAg using plane waves potential on the planar surfa&is expanded as
alone. Hence, we need a model poteniigl that coincides

with vy, in the interstitial region and is smooth enough inside o, 1 _

the MT spheres. Fortunately, such a potential energy is con- Gg (x,x")= A 2 exfdi(k+g)-x

structed in the bulk FLAPW calculation to be performed 99

before the surface calculation. As for the exchange- —i(k+g’)-x’]Gg1(g,g’). (6)

correlation potential, one can utilize that corresponding to

the plane-wave part of the charge density in the bulk calcu- In regionV; we calculate the Green function with zero
lation. Although this charge density has no physical meaningiormal derivative or§’ and subject to the boundary condi-
inside the MT spheres, the corresponding exchangetion Ggl on S The Green function is expanded with a non-
correlation potential can be calculated in the entire bulk uni©rthogonal basis sdty;} as

cell. As proposed by Weineft, the interstitial part of the

Hartree potent_lal is construct_ed in the bulk FLAPW calcula- G(r,r')=2 G; ’Xi(r)Xi*r(r/)- @
tion by replacing true atomic charge densities in the MT i

spheres by smooth pseudocharge densities. The resulta\p]tthe interstitial rediony. —\V/ the basis function is
Hartree potential is expanded in the entire bulk unit cell with glotVy = Viwr »

plane waves, and thus, suitable for the Hartree part of the >

model_potentlalvm. With the above .def|n|t|on pbm_, the N xi(1) = /Hexdi(k+g)'X]Sir‘(PnZ), (8)
potential energy becomes smooth in the entire interstitial

volumeVi—Vyr (Vur den_otes t_he volum_e Correqunding 0 where p,=n=/L (n=1) andi stands for a set of indices

all the MT spheres contained ). By virtue of this, the (g n). y. is used in a shorter intervdb,,b,] instead of
potential matrix element iV, —Vyr can be calculated si- [0 ] so that it can express the energy-dependent logarithmic
multaneously without summing up each contribution fromderivative of electron wave functions @andS' [see Fig.

A_, Ag, and the interstitial region of) separately. This 2(g)]. Within the MT sphere of thex-th atom atr,,

signifies that there is no need to specify the actual shape of

the true embedding surfacg. . One needs to specify only :

positions of the plane surfac&andS’. S (S') can be lo- Xi(r):LZm [AmU (1) + B (N]Yim(r=ra), (9
cated anywhere if the distance betweée(S’') and the atoms

in volume() is larger than their MT radii. With our choice of Wherer=|r—r,|, u, is the radial solution of the scalar-
vm, the potential energy in regiovi, becomes also continu- relativistic Koelling-Harmon equatidh at reference energy
ous acrossS, because , has the translational symmetry of ¢, , andu, denotes its energy derivative, has the large and
the bulk crystal. Thusy,, is smooth in the entire volume of small components and it is assumed that the small one van-
Vo. ishes at the MT radius=R, . A, andB,,, are chosen such
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that the large component gf and its radial derivative con- S S s
: 15 1A ! [
nect continuously to the plane wave pé} atr=R,,. N ! K !
G;i: in Eq. (7) is calculated a@ii/:[eS—H]i}l, where NN T j
S andH;; are the overlap and Hamiltonian matrices, re- Ai / 3 8|
spectively.H;;, consists of three terms, i.e., 'LS ! ] § !
! | ¢ — \\\ J - |
| | \\ A - .

Hii’:tii’+vii’_(G§1)ii’ y (10) i i i \\‘ i z

0 bb, b, b, L

where the matrix element of the embedding potential, which

is absent in standard slab calculations, is FIG. 3. Geometry and embedding parameters for a surface-
embedded Green function calculation. The potential energy is de-
_1 2 _1 o . termined self-consistently to the right &f .
(Gs i = Gs(9,9)sin(ppby)sin(py/by). (1)
Ill. SURFACE EMBEDDING CALCULATION

Regarding the f_re?-electron part: , the contribution from We perform a self-consistent Green-function calculation
the interstitial is 5[y, v, dr Vx{'(r)-Vxi/(r), while a i the surface region embedded between the semi-infinite
standard scalar-relativistic treatment should be made insidsubstrate and the vacuum. In accordance with the geometry
the MT sphere$>?3 Finally, the matrix element of the po- in Sec. II, we introduce a planar embedding surf&éz
tential energy is calculated as =b,) and a buffer volume\, (Fig. 3. In A, we use the
smooth model potential,,. The Green function is expanded
. by a nonorthogonal basis set in the same form as @Bysnd
Uii/:fv v dr xi" (Nvm(r)xir(r) (9). In the present case, the embedding potentialSorfz
oM =b,) expresses the effects of the semi-infinite vacuum. The

. embedding potential o8’ is given as
+ y dr xi (Nvp(r)xi(r). (12
MT

i
G 9.9)=—568,0V2(e—€,)—|k+g? (14
From G;;,, we evaluate the Green function & (z=b,). 5 (0997 3% v )=lk+d (19
. . -1 N s .
The embedding potential o, Gg,°(9,9'), is simply given  \\here e, denotes the vacuum level, which should be deter-

by the inverse of the matri@(gb,,g'b,). o mined self-consistently. The surface Green function is calcu-
The calculation in regio’/, proceeds in a similar way. |ateq asG;  =[eS—H] 1 where

We employ a plane-wave-like basis set in the same form as
Ec.].. (8). .In the .present casepn=n77/L.’ (n=1) and it is H”,=t”,+u”,—(Ggl)”,+(G;,1)”,, (15)
utilized in the interval[bj,b;] [see Fig. 2)]. In V, no

augmentation of the basis functions is necessary. We calcu-

2
late the Green function with zero normal der_i\llative Bz (G;fl)n’:[G;,l(g,g')Si”( pnbo)sin(p,/by).  (16)
=bj) and subject to the boundary conditi@y, on S’ (z
=bj). The Hamiltonian matrix has three terms, i.el;,  The first three terms in Eq15) have the same form as the

=tn'+(vm)iir+(G§rl)iir- The last term has an opposite corresponding ones.in_Eq10). From the Green function, the
sign with the corresponding one in E40), since the surface Output charge density is calculated as

normaln points toward the substrate€ —z) in our defini- ) dk

tion, whereas, in the embedding Hamiltonian, one should use _ €F

n outward from the embeddedgregion%z). By the same n(r)= 7Imf dELBZ (27)2G(€’k’r’r)' (17
reason, the output embedding potential &(z=bhb;),
Gs'(9.9'), is given by the inverse of G(gb;,g'b}).

where we explicitly expressed the dependence of the Green
To reach self-consistency, we begin with some inputfuncuo_n one andk. In .Eq' .(17) the summation ovek is
taken in the surface Brillouin zonéSBZ) and the energy

Gg'. In V,, we calculateGg*. Taking the samésg* as | S
) i ) ) integration is performed along a complex contou¢g,)
input, we work inV; to calculateGg,~. The self-consistent —(€,T)—(er ,T)—(e,0), wheree, is below the bottom

condition(4) is written in the present case as of the bulk bands'=1~2 eV, ande; denotes the Fermi
level, which should be imported from the preceding bulk
Gg,,l(g,g’)zexp(igd”)Gg,l(g,g’)exp(—ig’~dH). calculation in case of metallic systems. With the present ba-

(13)  sis set, the charge densities in the interstitial region and in-
side the MT sphere of thath atom are expanded, respec-
The left-hand side of Eq(13) is mixed with the original tively, as

inputG;,,l to generate the next input potential 8h We use
a higher-dimensional Anderson method reformulated by nN=> nia.mexnia-x)cogp.z 18
BlugeP* for the mixing procedure. ") % (G:n)explig-x)cospaz), 18
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MT spheres of atoms in the innermost surface layers as
N =2 Kol r =T )Na (1), (19 shown in Fig. 3. Thus, we need to introduce a new boundary
: surfaceS;: If the planez=Db, intersects the MT sphere of a
wherep,=nz/L (n=0) andK,, are lattice harmonics of boundary surface aton§, is chosen as the cap surface of
the « site. It is to be noted that E@18) is physically mean- this MT sphere on the left-hand sideof b, whereasS; is
ingful only in the space betwee8; and S'. The output chosen as the plare=b,, itself outside the MT spheres. The
charge density is mixed with the input one to generate th@esultants, has a bumpy shape. But it is easy to determjne
next input charge density. The iteration procedure is contings explained below.
ued until the self-consistency in charge density is achieved.
Since the charge density given by E¢E8) and(19) has
three-dimensional periodicitithe artificial lattice constant in
the z direction is 2.), one may use any method used in
standard bulk calculations for evaluating the exchange-
correlation potentiab,.. On the other hand, calculating the P(r)=> P(g)exd — lgl(z—bp)]. (22
Hartree potentialv,, is more complicated because of the 9
bOUndary condition on the bulk side. In the first step, WeDiverging and linear terms are missing from HQZ) be-
replace the electron density9) and the point nuclear charge cause they do not satisfy the boundary condition at the
n the MT spherez by a smooth model charge denilty us'ngacuumz=b2. The coefficient$(g) can be determined as
Weinert's method._ The resultant model charge (_1ensrmy) the g component of(r) on the planez= by. The value of
can be expanded in the same form as @§). We introduce ~ o e
¢(r) on z=b, is given as the boundary condition if is

a planez= by slightly to the left of the true embedding sur- ;
face S, and consider the solution of the Poisson equation/0Cated outside the MT spheres of boundary surface atoms,

~ ~N . . Whereas it is not known when the plare b, is contained in
Aw(r)=—4mn(r), in th_e interval by, b, ]. The solution for the MT spheres. Thus, we adopt an iterative scheme and
nonzerog components is . ~ .
assume some input values f@i(g). Next, we consider the
MT sphere of a boundary surface atom centerad, atnside

~ 2 (b ~
w(g,2)= —J dz' exp(—|gllz—2']) 2, N(g.ncospaz’)  the sphereg can be expanded as
|g| by n=0

First, we evaluate the bulk Hartree potentigl minusw

onS, as the boundary condition @ on S,. Forz=b,, b
can be written as

~ _ |
47n(g,n) 5 ~ N N

n=0 py+|g| ~
~ The coefficienty,, is determined as thd (m) component of
+wz exl —[g|(b;—2)]. (20 ¢(r) on the MT surface. To the left af=b,, $(r) on the

For g=0, it is possible to write the Hartree potential in the sphere surface is known as it is a part3f. To the right of

form, z=h,, $(r) can be evaluated using E€R2). Thus, it is
4 possible to determine,,, from Eq. (22). Then, using Eq.
w(g=02)= 2 _Z[ﬁ(gzoln)jucqnq(n) (23), one evaluateg(r) on the circular intersectign of the

n=1 py MT sphere and the plare=b,. Since the value of(r) is

now known on the entire surface af= bp, one can deter-

+CzNz(n)]cog pnz), (21 : ~ _ , .
mine the output values ab(g), which should be mixed with

whereny(n) andn,(n) are the Fourier components of the : ~ . . . .
q :
model charge densities that are normalized to unity and IoJEhe inputé(g) until self cqn3|stency 's obtained. - o~
So far, we have obtained the Hartree potentigE wy,

calized in[Obg] and[b,,L], respectively. The coefficients . o
¢, and c,, are chosen such that satisfies the boundary + ¢y corresponding to the model charge densify) in the
d volume to the right ofS,. The true Hartree potentialy,

conditiondw(g=0,z)/dz=0 at the vacuumz=b,). The ex- o e : . _ )
@ ) 4=bo) coincides withvy, in the interstitial region. Inside the MT

pressions fomg, Wz, Cq, andc, as well as an _example of spheresp,, can be calculated with the use of the same pro-
the functlongl form of the model charge densitieg(z) and cedure as in a standard bulk FLAPW calculation: One inte-
no(2), are glyen "_1 Ref. 13. ] - grates the Poisson equation on radial mesh points using the
The solution given above is not yet complete, singe trye MT charge densityl9) such that it becomes continuous
does not satisfy the correct boundary condition on the bullpn the MT surfacé® Finally, we comment on the calculation
side. Thu~s, asa (:Norrection, we add a soIEtion~of Ehe Laplacgf the potential matrix element;;, in Eq. (15) in the inter-
equation,g, tow. ¢ is determined such thay,=w+ ¢ con-  stitial region. As the potential energy, we use the model po-
nects continuously to the bulk Hartree potential on the potentialv, on the left-hand side o8, and the self-consistent
tential boundary surface to the buIB,).26 In the previous  potentialvs=v .+ vy, on the right-hand side &, . SinceS,
work using pseudopotentiatd we considered as$, a plane  has a bumpy shape, if the two contributions are calculated
surfacez=b, located slightly on the surface side &. separately, one must explicitly treat the cap region of the
Unfortunately, with the LAPW scheme, this plane cuts theboundary atoms, which is numerically time consuming. To
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avoid this, we employ the same real space technique as used
in bulk FLAPW calculations® Namely, we evaluate -
vs(N)O(r) [um(r)©(r) on the substrate side &;] on the
real space mesh points, where we chookea2 an artificial -
period in thez direction and®(r) denotes a step function
which equals unity in the interstitial region and zero inside L
the MT spheres. By performing a fast Fourier transform, the
potential energy times the step function is expanded in the
same form as Eq18). Using the basis functions of the form
(8), the matrix element can be calculated very easily.

11 (c) Rh(001)

IV. RESULTS OF NUMERICAL CALCULATIONS

As a test of the present method, we perform a self-
consistent electronic-structure calculation for 0@1) and
(111 clean surfaces of Rh, Pd, and Ag. All of them form an
fcc lattice in the bulk. In the first step we calculate their bulk
electronic structure at an experimental lattice constant using
a standard bulk FLAPW code, from which we obtain the
Fermi leveler and the bulk potentiab,. We also construct N
the smooth model potential,, from vy,. Second, we gener-
ate the embedding potential of a semi-infinite metal for a L
given set ofk points and energy mesh points following the
procedure described in Sec. Il. In the third step, we conduct
a self-consistent surface-embedded Green-function calcula- o
tion using the method described in Sec. Ill. In the present
work we do not consider the relaxation of surface atomic L
layers, and the spacing between the neighboring lattice
planes is set equal to the bulk value. In the calculation, two
outermost lattice planes are included in the surface embed-
ded region and the effects of the rest of the substrate are
expressed by the embedding potential. For example, for
Ag(001), the embedding parameters defined in Fig. 3 are
chosen asb;=15a.u., b,=2au., b,=33au., b, B
=19 a.u,, andL=20.5 a.u. Regarding atomic parameters,
the MT radiusR,=2.64 a.u., and the first and second lattice g, 4. Total charge density on a vertical cut plane containing
planes are located at=8.26 and 4.42 a.u., respectively. The atoms in the top layer and their nearest neighbors in the second
distance betweer=b, and the second Ag layer, 2.92 a.u., is |ayer for (a) Ag(001), (b) Pd001), and (c) Rh001). The lowest
therefore slightly larger thaRg to allow for the space for the contour level is 5107 a.u. and it increases successively by a
buffer volumeA, . In expanding the Green function inside factor of 138, Arrows indicate directions toward which the charge
the MT spheres, the maximum angular momentum for thelensity increases. Dashed lines indicate the crosscut of boundary
basis functiong9) is | ,,,,= 9, whereas the plane-wave cutoff surfaceS,. The distance between neighboring ticks is 2 a.u.
energy for the basis functions in the interstitial is chosen as
10.2 Ry. We use the Ceperley-Aldéexchange-correlation present calculational method, the Hartree potentjgs con-
potential within the local density approximati¢hDA ). structed such that, becomes continuous acroSs. But we

In Fig. 4 we show contour maps of the calculated chargempose no boundary condition on the exchange-correlation
densities on a vertical cut-plane containing atoms in the firspotentialv,; on S,. Thus,v,, is discontinuous acrosS, at
layer and their nearest-neighbors in the second atomic layehe initial stage of the iteration procedure. Nevertheless, we
for the (001) surfaces of Ag, Pd, and Rh. Figure 5 showssee from Figs. 4 and 5 that the continuitywgf; also holds
similar charge contour maps for theit1l) surfaces. The well when the self-consistency in charge density is achieved.
thick dashed lines in these figures indicate positions of th&he charge-density maps of three metals look qualitatively
potential boundary surfac&,. On the surface side &, very similar to one another for both th®01) and (111
we plot the self-consistent charge densities determined witBurfaces. Looking more carefully, one notices that the charge
the present surface-embedded Green-function methodgensity in the interstitial region decreases slightly with in-
whereas charge densities of the fcc crystals calculated with ereasing atomic number reflecting a larger lattice constant
bulk FLAPW code are plotted on the substrate sid&§pflt  and more localized orbitals.
is seen that the charge density connects very smoothly across The work function of a metakp, can be calculated as the
Sy, which signifies that our embedding potential simulatesdifference between the vacuum level and the Fermi energy,
the effects of the semi-infinite crystal excellently. In the €,—er. The calculated values @ are listed in Table I. For

1 I (b) Pd(001)

- (a) Ag(001)
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LDA values of Heinrichsmeieret al. calculated with a
mixed-basis pseudopotential method within the slab approxi-
mation, i.e., 5.68 eV for RA01) and 5.75 eV for PA.11).33
They also calculated the work functions with a nonlocal
exchange-correlation potential, which were, however, by
~0.4 eV larger than their LDA values. With the generalized
gradient approximatioiGGA), Pallassanat al3* predicted

a smaller valuesp =5.42 eV for Pd111), which is in better
agreement with recent measuremenbs=5.44+0.03 eV
(Ref. 39 and 5.50-0.01 eV>® Finally, our work function
for Rh(11J) is in fair agreement with 5.8 eV of Skriver and
Rosengaard For an isolated Ri®01) monolayer, Wu and
Freemaf’ obtained® =5.77 eV, which is fortuitously very
close to our semi-infinite value.

One important advantage of the semi-infinite geometry is
that it can describe localized surface stdi®S and surface
resonancesSR) accurately. Especially, when ap-like sur-
face state appears near the edge of a projected bulk band gap,
its wave function decays rather slowly toward the interior of
the metal. It is difficult to treat such a SS with the standard
slab approximation. Surface states on tB81) surfaces of
noble and transition metals were previously studied by the
embedding techniqu:'83° For Ag(001) we obtained a
good agreement with the calculation of Aers and
Inglesfield®® Hence, in the present paper, we show results
for the (111) surfaces.

We define thek-resolved atomic density of staté09)

by

41t (b) Pd(111)

1 .
p(e,k)=—;f dr ImG(e+id,k,r,r), (24

i (Ia) Ag(111)

where the volume integral is done in a MT sphere arnslan
infinitesimal positive number. Solid lines in Fig(é show
FIG. 5. As in Fig. 4, but for(a) Ag(111), (b) Pd111), and(c)  the calculated DQS_of a top-layer atom for(A¢1) at fourk
Rh(111) surfaces. points along thd"-K line in SBZ3” Also shown by dashed
lines is the contribution of thp (I =1) orbitals top(e€,k). In
Ag(001), the previous slab-FLAPW calculations reported calculating the DOS§ in Eq. (24) was replaced by a small
4.74 e\f® and 4.60 e\?° while the previous embedding cal- positive numberp=5x10"* a.u. in order to avoid the SS
culations predicted =4.95 e\?° and 4.67 e\A! They scat- poles on the real energy axis. The width of SS peaks in this
ter in a range of a few tenths of eV due to different numericaffigure is therefore just an artifact of. It is well known that
parameters. Also, different choice in the functional form ofthe Ag111) surface has a partially filled Shockley-type SSin
the exchange-correlation potential leads to a differenck in the projecteds p-band gap near the center of SBZ. Kevan and
of ~0.1 eV. For Ad111), our value 4.97 eV is in good Gayloard® investigated this state by angle-resolved photo-
agreement with 5.0 eV of Skriver and Rosengaard, who peremission spectroscopy and obtainEg=—0.12 eV as its

formed a comprehensive study of work functions for the fccpinding energy relative ter atl. In Fig. 6a) the SS peak is

(111 E.ind bcg(llO) surfaces_ of all the_ @, 4d, and & met- located at-0.11 eV beloweg atI" in good accord with their
als using their Green-function technique based on the tigh experiment. This state is dominangilike in orbital charac-
binding linearized-muffin-tin-orbitalLMTO) method? For P :

) . r and has a parabolic energy dispersion at stallhe
Pd, the present results are in good agreement with the recebeélculated effective mass® =0 37 a.u. is smaller tham*

=0.53 a.u. deduced from the inverse photoemission
spectrae® We also see from Fig.(8) that the energy differ-
ence between the SS peak and the upper edge of the pro-

TABLE I. Calculated work functions of Ag, Pd, and R@Y).

Rh Pd Ag jected sp bulk band (indicated by vertical bajsdecreases
(00 5.74 573 4.80 with increasing wave number. In the uppermost curve corre-
(111) 5.72 574 4.97 sponding to|k|=0.4 a.u., the SS merges into the projected

band and appears as a surface resonance. We emphasize that
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FIG. 7. Energy dispersion of the-like surface state along

T'-K for the (111) surface of Ag, Pd, and Rh. Lines between sym-
bols are guides for eyes.

Shockley-type surface band near the center of SBZ was
predicted by Loui® and observed via inverse photoemission
spectroscopy by Hulbe#t al*! Its energy al” was found to
be 1.3 eV above the Fermi level. More recent 2PPE experi-
ments reported similar values, 126.03 eV (Ref. 35 and
1.35+0.02 eV3® In the present calculation, the correspond-
ing Shockley state appears slightly at a lower position, i.e., at
1.15 eV abovesr atI'. As in the case of A1), this state
has a strong character and a parabolic energy dispersion.
Its effective massn* =0.18 a.u. is in fair agreement with a
recent theoretical value of Heinrichsmegdral, m* =0.22,

ut is much smaller than that determined by inverse

hotoemissiot! m*=0.35 a.u. In Fig. @) we find the
second SS peak at 0.2 eV abayeat I'. This state, which is
such a transition from a true SS to a SR is difficult to analyzéoc""te_d slightly above the upper edge Of. the butk dand
with the standard slab approximation. (Lg), is twofold degenerate and.predor_mnantly maded of

Figure Gb) shows the top-layer atomic DOS for @A ). orbitals. Although it couplgs'weh prOJected'bqu bends

Very recently, energy positions and lifetimes of the unoccu-2nd becomes a SR exceptlatits interaction with them is
pied Schockley states and image-potential states ¢hiRd  relatively weak and it remains a noticeable peak along the
were studied by two-photon photoemissi@PPH spectros- I'-K direction having a much smaller energy dispersion than
copy by Schter et al3® In order to calculate the image- the p-like SS. Hulbertet al** observed a large peak imme-
potential states, one must replace the embedding potentidiately above the Fermi level in their inverse photoemission
(14) on the vacuum side by that corresponding to the imagépectra from PA11) and assigned the peak as originating
potential < — 1/z).3° As the aim of the present calculation is from the unoccupiedi band. It may be likely that the peak
just to test our new calculational scheme, instead of doing sgorresponds to the-like surface state.
we focus on Schockley states in this work. Sehat al3® We show in Fig. &) the atomic DOS for the top-layer
also analyzed measured lifetimes of the surface states usinggéom of Rf{111). As in the case of Rd11), the p-like SS
one-dimensional model and the GW approximation. Atandd-like SS appear af' aboveer. As the upper edge of
present, it is too complicated to perform such a GW calcuthe bulk 4d band (L) and that of thesp band (L) are
lation using a fully three-dimensional Green function as ob-close to each other for Rh, both are located at 0.9 eV above
tained in the present work. On Pd1), an unoccupied the Fermi level and we observe only a single large peak in

m =

€-¢e_(eV)

X

FIG. 6. Atomic density of states(e,k), for top-layer surface
atoms alond” —K line in SBZ(solid lineg. Dashed lines show the
p component op(e,k). (&) Ag(111), (b) Pd111), and(c) Rh(111).
Small numbers near each line indicate the wave nunjbin
atomic units. Vertical bars are the upper edge of the projecte
sp-bulk band. The imaginary part of energy=5x10"% a.u.
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Fig. 6(c). Thed-like state becomes broader with increaskng V. SUMMARY
keeping its energy position nearly unchanged. By a self-
consistent linear combination of atomic orbitdl<CAO) cal-

X . ? X _ We have presented a method for calculating the Green
culation, Feibelmalt studied the electronic structure of an ,,tion of semi-infinite crystal surfaces using the LAPW

11-layer RIi111) slab and found a SS at1 eV above the basis set and the embeddin .

. : : g approach of Inglesfield. The
Fermi level at the center of SBZ. The orbital character of this | .. 4 comprises two independent steps: First, the embed-
state was not mentioned in that work. In Fig. 7 we summa-

! . i . ding potential of a semi-infinite substrate is generated from
rize the energy dispersion of tipelike surface state at small the bulk crystalline potential. Second, a self-consistent sur-
|k| along thel'-K direction for the three metals. For Rh, its Y P : '

) . . . : ﬁ ce Green-function calculation is performed in the embed-
dispersion deviates from a quadratic behavior even at sma(jjl .
D e . . . ed surface region. The great advantages of the present
k| and is difficult to fit by a single effective mass. method over the previous ones aigthat there is no need to
Before closing this section, we comment on total energy P

We are planning to implement subroutines to compute thépemfy the exact sha_lpe Of_ the true embedding surface
total energy of the system with the embedding method. OIlihroughout the calculation, ar{d) that one d_oes not need to
the other hand, the total energy and atomic forces of solid®at separately the caps of the muffin-tin spheres of the
surfaces can be calculated rather accurately even with a thipeundary surface atoms. By virtue of them, the amount of
slab in most cases. Thus, a more practical way might be tgumerical work for performing a self-consistent surface-
optimize the atomic geometry with an existing slab code agmbedded calculation can be reduced to the same level as
first and to use that geometry in the subsequent semi-infinitéhat in a standard bulk FLAPW calculation. As a test, we
Green-function calculation. This does not negate the imporperformed a self-consistent electronic structure calculation
tance of semi-infinite methods, since there are a wide varietfor the (001) and(111) clean surfaces of Rh, Pd, and Ag. We

of problems that can be studied only using truly semi-infinitehave studied the charge density, work functions, and the sur-

geometry.

face states of these surfaces.
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