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A key element in the density functional embedding theory (DFET) is the embedding potential.
We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2)
the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the
first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities
and the total system’s density, are calculated at a finite temperature. This is a physical extension
since materials work at finite temperatures. We show that the embedding potential is strictly unique
at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential
solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the
chemical potentials across subsystems. The solver is robust and efficient for several non-trivial
examples, in all of which good quality spin-polarized embedding potentials were obtained. We
also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) sur-
face, which is related to the modeling of the heterogeneous catalysis involving iron, such as the
Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform
embedding simulations of some challenging material problems, such as the heterogeneous catalysis
and the defects of complicated spin configurations in electronic materials. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4944464]

I. INTRODUCTION

Local electronic structures and energetics are prerequi-
sites for our understanding of important chemical processes
in materials. Unfortunately, due to the many-body nature of
the Schrödinger equation, it is computationally infeasible
to apply accurate quantum mechanics methods to large
scale materials. Multi-scale quantum mechanics methods
are therefore invaluable for helping us gain insight into the
local electronic structures in materials. When performing
multi-scale modelings, one often partitions a system into two
subsystems: the region of interest (called cluster in this work)
and its environment. One conceptual difficulty is how to
partition the many-body wave-function, since in principle a
wave-function cannot be partitioned. Fortunately, in practice,
electronic structure at one location is not affected much by
a perturbing potential far away, i.e., the “nearsightedness”
principle of the quantum mechanics.1,2 This nearsightedness
principle is believed to be one of several reasons for the
great success of the local density approximation (LDA)
and the generalized gradient approximation (GGA) widely
used in the density functional theory (DFT)3,4 calculations.
Nearsightedness principle is also the foundation of many
linear-scaling Kohn-Sham (KS) DFT methods.5,6

Many schemes exist for performing multi-scale quantum
mechanics simulations. For ionic systems, such as oxides,
the partitioning is straightforward. Point charges or shell-
models7,8 can be used to represent the electrostatic potential
due to background ions. For covalent materials, the capping
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atoms9 and the pseudo-bond10 method have been used to
saturate the dangling bonds due to cutting covalent bonds.
By matching the wave functions at the interface between
adjacent subsystems, an environment can be replaced by
an energy-dependent embedding potential.11,12 Inspired by
the pseudopotential techniques, a cluster can be solved by
enforcing its orbitals to be orthogonal to the orbitals of
its environment.13 In the density matrix embedding theory,
the electronic structure of a cluster is solved by performing
correlated wave-function (CW) methods in the active space
constructed by projecting the total system’s molecular orbitals
into the cluster’s Hilbert space.14 Different from the traditional
complete active space self-consistent field method, in the
density matrix embedding theory, a potential is applied to the
bath to better mimic the true bath.

In the past two decades, the density functional embedding
theory (DFET)15–19 has become a powerful method for
calculating the local energetics and electronic structures in
materials. DFET has been successfully applied to many
challenging surface problems, including explaining the
adsorption of carbon monoxide on copper surface,20 resolving
the controversial mechanism of aluminum oxidation,21 and
shedding light on the plasmon-assisted hydrogen dissociation
on gold nanoparticles.22 The basic idea of DFET is that we
partition a system’s electron density into subsystem densities.
After the partitioning, a cluster is defined and is solved by a
high-level method, with its environment replaced by a local
embedding potential. The development of DFET was inspired
by the early pioneering works on the subsystem DFT23–25 and
the frozen density embedding (FDE).26,27 Details about the
subsystems DFT, FDE, and DFET have been reviewed.18,28–32
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Embedding potentials were evaluated by approximating
the kinetic part of the interaction between a cluster
and its environment with certain kinetic energy density
functionals.15,16,26,33–38 First-principle embedding potentials
were obtained by inverting the KS equation.39–42 The non-
uniqueness of embedding potentials (called the reactivity
potential in Ref. 43) was discussed and removed by Cohen
and Wasserman in their study of the chemical reactivity.43

A similar approach was taken to tackle the non-uniqueness
of embedding potentials in the context of DFET, and an
optimized effective potential (OEP) method was developed
for calculating embedding potentials.20

In this work, we address two major issues related to
the embedding potential: (1) its non-uniqueness and (2) the
numerical challenges in calculating it, especially for the spin-
polarized materials. The non-uniqueness of an embedding
potential was previously removed under certain assumptions.
In Ref. 20, the assumption was that subsystems need to
be non-degenerate. In Ref. 43, the assumption was that
the sum of subsystem energy functionals needs to be non-
degenerate. These assumptions can easily break down in
practice, since degenerate quantum systems are common in
practice. On the other hand, the degeneracy of a quantum
system does not cause much trouble in DFT, since the total
energy stays the same for different degenerate states, and we
simply solve for a state out of several degenerate ground
states.44 In embedding simulations, a non-unique embedding
potential can yield different results. For example, different
embedding potentials might yield different adsorption energies
for molecules adsorbed on metals. The non-uniqueness of
embedding potential therefore makes embedding simulations
non-tractable. The second issue is that to calculate the
embedding potentials we need to perform self-consistent
KS-DFT calculations on subsystems during solving the OEP
problem.20 If the convergence of these KS-DFT calculations
is difficult to reach, the OEP problem is numerically difficult
to solve.

In this work, I remove the non-uniqueness of embedding
potentials by extending DFET to the finite temperature.
This extension does not narrow down the scope of its
applications, since materials work at finite temperature. To
resolve the second issue above, we develop an iterative method
that does not require performing self-consistent KS-DFT
calculations on subsystems. The robustness and efficiency of
this new iterative method is demonstrated on several high-spin
systems.

II. EXTENDING THE DENSITY FUNCTIONAL
EMBEDDING THEORY TO FINITE TEMPERATURE

A. The density functional embedding theory

We briefly summarize several key points of DFET. It
tackles difficult electronic structure problems in a divide-and-
conquer manner.18,19 We divide the total system into several
subsystems (the step 1 in Fig. 1). We take the carbon monoxide
(CO) adsorbed on copper surface as an example. We group
atoms into two subsystems. The cluster (subsystem 1) contains
the CO molecule and several Cu atoms underneath. The rest of

FIG. 1. An illustration of the density functional embedding theory. The red
atom is oxygen. The brown atom is carbon. The blue atoms are copper.
ncluster(r⃗ ), nenv(r⃗ ), and ntotal(r⃗ ) are the electron densities of the cluster, the
environment, and the total system, respectively. The partitioning satisfies the
constraint ntotal= ncluster+nenv.

the Cu atoms are considered as the environment (subsystem 2).
In the step 2, the total electron density ntotal(r⃗) is decomposed
to the cluster’s density ncluster(r⃗) and the environment’s density
nenv(r⃗). The total energy is then formally decomposed as

Etotal = Ecluster[ncluster] + Eenv[nenv] + Eint[ncluster,nenv], (1)

where Eint is the interaction energy between cluster and
environment. Based on the energy decomposition, the
embedding potential that the environment exerts on the cluster
is formally defined as V cluster

emb (r⃗) = δEint/δncluster(r⃗), and the
embedding potential that the cluster exerts on its environment
is V env

emb (r⃗) = δEint/δnenv(r⃗).
Since it is the total electron density that determines the

entire system, the sum of the subsystem electron densities
should be equal to the total electron density, i.e., ntotal

= ncluster + nenv. Apparently, any partitioning of the total
electron density is, in principle, valid, as long as the sum
of subsystem electron densities matches the total electron
density ntotal. This non-uniqueness has been removed20,43

by employing an additional constraint V cluster
emb (r⃗) = V env

emb (r⃗)
≡ Vemb(r⃗): all subsystems share the same embedding potential.
The major task is then to solve for this common embedding
potential Vemb(r⃗).

B. Extending the density functional embedding theory
to finite temperature

To extend DFET to the finite temperature, the total
electron density ntotal and the subsystem electron densities
are all calculated at a finite temperature. Since subsystem can
no longer be degenerate at T > 0,45,46 the assumption in our
previous proof20 that subsystems must be non-degenerate can
be removed. There are several ways to extend the descriptions
of subsystems to a finite temperature. A subsystem can be
treated by (a) the grand canonical ensemble, (b) the grand
canonical ensemble with a fixed electron number, and (c) the
canonical ensemble. In the following, we show that embedding
potential is strictly unique in all cases.
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1. Subsystems are treated using the grand canonical
ensemble and have a common chemical potential

We consider the case that a system is decomposed
into two subsystems: A and B. Our discussion can be
generalized to multiple subsystems. To prove the uniqueness
of the embedding potential, let us assume that there are two
embedding potentials Vemb and V ′emb, both of which give the
ntotal(r⃗). Vemb gives the subsystem density matrices, {ρA, ρB}
and V ′emb gives the subsystem density matrices, {ρ′A, ρ′B}. The
global chemical potentials are µ and µ′, respectively.

Following Mermin45 and our previous work,20 for the
subsystem A, we have

Ω
′
A = Trρ′A

(
H ′A − µ′N +

1
β

ln ρ′A

)
< TrρA

(
H ′A − µ′N +

1
β

ln ρA

)
= ΩA + TrρA(V ′emb − Vemb) +QA(µ − µ′), (2)

where N is the electron number operator and H ′A is the
Hamiltonian of the subsystem A plus V ′emb. QA is the electron
number of the subsystem A. Similarly, we have for the
subsystem B,

Ω
′
B < ΩB + TrρB(V ′emb − Vemb) +QB(µ − µ′). (3)

Summing up above two equations, we have

Ω
′
A +Ω

′
B < ΩA +ΩB +


dr⃗n(r⃗)(V ′emb(r⃗) − Vemb(r⃗))

+Qtotal(µ − µ′). (4)

By interchanging the primed and unprimed cases, we
have

ΩA +ΩB < Ω′A +Ω
′
B +


dr⃗n(r⃗)(Vemb(r⃗) − V ′emb(r⃗))

+Qtotal(µ′ − µ). (5)

Summing Eqs. (4) and (5), we have 0 < 0, which is false.
Thus, if subsystems are treated using the grand canonical
ensemble and have the same chemical potential, there is
only one embedding potential (one density partitioning) for
a given total electron density. Our proof does not require the
assumption that subsystems are non-degenerate,20 or the sum
of subsystems is non-degenerate.43

2. Subsystems are treated using the grand canonical
ensemble and the electron numbers in subsystems
are fixed

Subsystems can be solved using KS-DFT employing
advanced orbital-dependent exchange-correlation (XC) func-
tionals, such as the exact-exchange (EXX) and the correlation
based on the random phase approximation (RPA).47 In
practice, we would like to fix subsystems’ electron numbers
to integers, since fractional electron number can cause the
self-interaction error,48,49 even with some advanced XC
functionals, such as the EXX+RPA.50

We consider the case that subsystems are treated using
the grand canonical ensemble, and their electron numbers are

fixed. Following a similar procedure, we show in Appendix A
that the resulted embedding potential is also strictly unique.

3. Subsystems are treated using
the canonical ensemble

Another way to extend subsystems to finite temperature
is to treat them using the canonical ensemble. The Helmholtz
free energy is51

A[ρ] = Trρ(H + 1
β

ln ρ), (6)

where ρ is the density matrix. The stationary point of A[ρ] is

ρ0 = exp(−βH)/Tr exp(−βH),
which is the unique minimum of A[ρ] (proved in Appendix B):
A[ρ] > A[ρ0] for any ρ , ρ0. We now show that the resulted
embedding potential is also unique.

Again let us assume that there are two embedding
potentials Vemb and V ′emb, such that they produce the same
total electron density. Similar to the previous proof, we have

A′A = Trρ′A(H ′A +
1
β

ln ρ′A)

< TrρA(H ′A +
1
β

ln ρA)

= AA +


dr3(V ′emb(r⃗) − Vemb(r⃗))nA(r⃗). (7)

For the subsystem B, we have

A′B < AB +


dr3(V ′emb(r⃗) − Vemb(r⃗))nB(r⃗). (8)

Summing up the two inequalities, we have

A′A + A′B < AA + AB

+


dr3(V ′emb(r⃗) − Vemb(r⃗))ntotal(r⃗). (9)

By interchanging the primed and unprimed cases, we have

AA + AB < A′A + A′B

+


dr3(Vemb(r⃗) − V ′emb(r⃗))ntotal(r⃗). (10)

Summing Eqs. (9) and (10), we obtain 0 < 0, which is false.
Therefore there is only one embedding potential (if it exists)
that partitions the total electron density into two subsystem
electron densities.

III. METHODS FOR SOLVING
FOR EMBEDDING POTENTIALS

After removing the non-uniqueness of embedding
potentials by extending DFET to finite temperature, we discuss
how to efficiently solve for embedding potentials, which is a
key input for embedded cluster calculations.
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A. Optimized effective potential method for solving
for embedding potentials

We recently proposed an OEP method for calculating
embedding potentials.20 In that OEP method, we define a W
functional in terms of Vemb(r⃗),

W =

K

EK[Vemb,σ] −


σ=α,β


dr3nref

total,σ(r⃗)Vemb,σ(r⃗). (11)

nref
total,σ(r⃗) is the reference electron density obtained by

performing calculations on the total system in advance. For
example, nref

total,σ(r⃗) can be obtained by performing KS-DFT-
LDA on the total system. EK is the energy of the subsystem
K , with the Hamiltonian Ĥ ′K = ĤK + V̂emb, where ĤK is the
original Hamiltonian of the subsystem K . EK is then a
functional of Vemb. Any method can be employed to solve
Ĥ ′K (such as KS-DFT-LDA), as long as the method outputs
electron density and energy which are needed to calculate the
W and its gradient20

gσ(r⃗) ≡ δW
δVemb,σ(r⃗) =


K

nK,σ(r⃗) − nref
total,σ(r⃗). (12)

In Ref. 20, we showed that we have


K nK = nref
total, once the

W is maximized.
Here, we consider a special case that all subsystems are

solved by KS-DFT and nref
total,σ is also obtained using KS-

DFT. The accuracy of Vemb,σ is then determined by the XC
functional used in these KS-DFT calculations. Since KS-DFT
is often solved in an iterative way,52 subsystem KS-DFT
can have difficulty to converge in practice. If subsystem’s
KS-DFT does not converge, the gradient for maximizing the
W functional will have error, making it difficult to maximize
the W . We have observed such numerical difficulty in practice.

B. An iterative method for solving
for embedding potentials

Inspired by the popular iterative scheme for solving
KS-DFT,52 we introduce an iterative method for calculating
embedding potentials. The basic idea is to first maximize the W
functional with the subsystem KS potentials fixed. After that,
we update subsystems’ KS potentials. At self-consistency, we
obtain the same results as solving the original OEP problem
(Eq. (11)).

A flowchart for our iterative method is shown in Fig. 2.
In the step 1, the reference electron density is given. In the
step 2, the subsystem KS potentials are constructed from the
trial subsystem Hartree + XC potentials {Vhxc,K}. In the step
3, the W functional is maximized for the fixed {Vhxc,K}. In the
step 4, Vemb and new subsystem electron densities are obtained
from the step 3. In the step 5, {Vhxc,K} are updated. Vxc,K

can be easily calculated based on the subsystem densities
nK(r⃗), if density-based XC functionals, such as LDA and
GGA, are used. For those orbital-based XC functionals, Vxc,K

can be obtained by solving the OEP equation.53 In the step
6, we check the convergence of Vhxc,K . To accelerate the
convergence, some mixing schemes, such as the Anderson
mixing54 or the Pulay mixing,55 can be used for updating
Vhxc,K . Our method is very similar to the popular iterative

FIG. 2. The flowchart of the iterative embedding potential solver that solves
for the embedding potential Vemb(r⃗ ) for a given reference density n

ref
total(r⃗ ).

Vhxc,K is the sum of the Hartree and XC potentials of the subsystem K . nK

is the density of the subsystem K .

method for solving KS-DFT, in which the KS Hamiltonian is
diagonalized for a fixed KS potential and the KS potential is
later updated using some mixing schemes.52

For a trial Vhxc,K(r⃗) in the step 3, the KS Hamiltonian of
the subsystem K is

ĤKS,K = −
1
2
∇2 + V̂nl,K + V̂emb + V̂ext,K + V̂hxc,K , (13)

where Vnl,K is the nonlocal part of the pseudopotentials (if
nonlocal pseudopotentials are used in calculations) and V̂ext,K

is the external potential of the subsystem K .
To work at finite temperature, the subsystem energy EK

in the W functional (Eq. (11)) is replaced by the free energy

FK =

j

fK, j⟨φK, j, ĤKS,KφK, j⟩ − T SK , (14)

with φK, j being the jth KS orbital of the subsystem K solved
by diagonalizing ĤKS,K . { fK, j} are the occupation numbers. T
is the smearing temperature used in the Fermi-Dirac smearing
scheme. SK is the electronic entropy due to the smearing and
is expressed as

SK = −kB


j


( fK, j ln fK, j − (1 − fK, j) ln(1 − fK, j)). (15)

The accuracy of the gradient (Eq. (12)) now just depends on
the accuracy of the diagonalization of the ĤKS,K . Thus accurate
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gradient g(r⃗) can be obtained by tightening the threshold in
the diagonalization.

C. Specifying the electron numbers in subsystems

We have three schemes to specify the electron numbers in
subsystems: (a) the spin-up and spin-down electron numbers
are fixed in subsystems, (b) the magnetic moment in each
subsystem is relaxed, and (c) the spin-up and spin-down
chemical potentials across all subsystems are equilibrated,
allowing charge transfer between subsystems. In all schemes,
the magnetic moment of the total system is determined
by nref

total,σ. For the cases (a) and (b), the Fermi-Dirac
smearing is used to populate electrons over the KS orbitals in
subsystems.

In the case (c), the W functional is modified to be

W = FS −


σ=α,β


dr3nref

total,σ(r⃗)Vemb,σ(r⃗), (16)

with

FS =

j

fK, j⟨φK, j, ĤKS,KφK, j⟩ − T Stot. (17)

FS is the extension of the sum of the energies of all the
embedded subsystems (the ES defined in Ref. 43) to a finite
temperature. The occupation numbers { fK, j} are therefore
determined by distributing all electrons to all subsystems’ KS
orbitals according to the Fermi-Dirac statistics. The entropy
is calculated as

Stot = −kB


K


j


( fK, j ln fK, j − (1 − fK, j) ln(1 − fK, j)),

with j loops over all the KS orbitals in the subsystem K . K
loops over all subsystems. The expression of Stot manifests
that FS is the free energy of a composite system which is the
sum of all subsystems.

In order to show that there is only one minimum for
the W functional in all the three cases, we now show that
the W functional is concave with respect to its variable
Vemb,σ. For the cases (a) and (b), the ground state of a
subsystem is solved by minimizing its free energy (Eq. (14))
for a given Vemb, therefore we have FK[αVemb,1 + (1 − α)Vemb,2]
> αFK[Vemb,1] + (1 − α)FK[Vemb,2] for 0 < α < 1. The linear
term


σ


dr3Vemb,σnref

total,σ in W is also concave, therefore W
is concave with respect to Vemb.

For the case (c), subsystem densities are obtained
by minimizing the free energy FS with the constraints

K NK,α = Ntotal,α and


K NK, β = Ntotal, β, where Ntotal,σ

is the total electron number for spin σ. The spin-up and
spin-down chemical potentials µα and µβ are then the
Lagrangian multipliers for these two constraints. With the
similar procedure, FS can be shown to be concave with respect
to Vemb,σ, therefore W is concave with respect to Vemb,σ.

In all the three cases, the gradient for maximizing the W
can be efficiently evaluated according to Eq. (12) which can
be derived with the chain rule

gσ(r⃗) = δW
δVemb,σ(r⃗)

=

K


dr ′3


σ′

δFK

δnK,σ′(r⃗ ′)
δnK,σ′(r⃗ ′)
δVemb,σ(r⃗)

+

K

(nK,σ(r⃗) − nref
total,σ(r⃗)), (18)

where K loops over all subsystems.
In the case (a), we plug in the chemical potential

µK,σ = δFK/δnK,σ into Eq. (18). Since the number of spin-up
or spin-down electrons is fixed in each subsystem, the integral
for each spin σ on the right-hand side (RHS) of Eq. (18)
is then zero. In the case (b), the spin-up and spin-down
chemical potentials in each subsystem are equal, since the
magnetic moment in each subsystem is relaxed. The integral
on the RHS of Eq. (18) is again zero, since the electron
number in a subsystem is fixed. In the case (c), we plug in
µσ = δFK/δnK,σ to the above equation, and the first term on
the RHS of Eq. (18) is again zero, due to the conservation
of Ntotal,α and Ntotal, β. Since W is concave, it then has only
one maximum which is reached when the gradient is zero
(ntotal,σ =


K nK,σ).

IV. COMPUTATIONAL DETAILS

The reference densities nref
total are calculated with

KS-DFT-GGA. Subsystem KS-DFT-GGA calculations are
performed using a modified ABINIT program,56 which takes
an embedding potential as an additional external potential
and diagonalizes the KS Hamiltonian using the conjugate
gradient method.52 Norm-conserving pseudopotentials were
built by the fhi98pp program57 with the default settings
for the core radii. The Perdew-Burke-Ernzerhof (PBE) XC
functional is employed.58 The Fermi-Dirac smearing is used
with a smearing temperature of 0.1 eV. The kinetic energy
cutoffs of 600 eV, 800 eV, and 600 eV are used for the CoCl2−4 ,
Fe5, and H2 examples, respectively. For the NiO dimer and the
Fe body-centered cubic (bcc) (110) surface, a kinetic energy
cutoff of 800 eV is used. The kinetic energy cutoffs used
here are smaller than what they are expected to be. Since the
purpose is to demonstrate the efficiency and robustness of our
new iterative embedding potential solver, these relatively low
kinetic energy cutoffs should not introduce any fundamental
issue. All structures are relaxed using KS-DFT-PBE.

A FORTRAN90 program (named “dfet-driver”) is written
to conduct the flowchart in Fig. 2. The dfet-driver program
calls ABINIT to perform non-self-consistent KS-DFT
calculations to maximize the W functional. In the step 6
(Fig. 2), a vector is formed by concatenating subsystem KS
potentials, as VKS,all =

�
VKS,1,VKS,2, . . . ,VKS,m

�
, with m being

the number of subsystems. We found that the Anderson
mixing54 of VKS,all with a mixing parameter of 0.2 yields good
convergence rates. To obtain the initial guesses of subsystem
KS potentials, we perform 20 iterations of non-spin-polarized
KS-DFT-PBE calculations on isolated subsystems. In the step
3 (Fig. 2), we terminate the optimization of the W functional
when one of the two criteria is met: (a) the norm (gnorm) of
the gradient g(r⃗) is reduced by five times or (b) the change
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of the W is less than 1 × 10−5 hartree. To suppress the ripples
in the inverted embedding potentials, embedding potentials
are regularized,59 with a penalty coefficient of 1 × 10−5 for all
examples. Plots are generated using the VESTA program.60

We allow charge transfer between subsystems in some
examples. Charged systems cannot be described exactly by the
periodic boundary condition, due to the long-range Coulomb
interaction between periodic images.61 Charged subsystems
are not problems in our method, since the subsystem KS
potentials are fixed during the maximization of the W
functional. The gradient, calculated according to Eq. (12), is
always consistent with the W functional, even if the periodic
boundary condition is employed.

V. RESULTS AND DISCUSSIONS

We show the performance of our iterative embedding
potential solver with several spin-polarized examples. For each
example, spin-polarized embedding potentials are calculated
to study the stability, efficiency, and accuracy of the method.

A. Covalent system: H2 molecule

The spin symmetry can be broken by introducing spin-
polarized embedding potentials. We demonstrate this with the
H2 molecule, with each hydrogen atom being considered
as a subsystem. We assign one spin-up electron in one
subsystem and one spin-down electron in another subsystem.
The spin-up and spin-down embedding potentials are plotted
in Figs. 3(b) and 3(d). In Fig. 3(b), the spin-up embedding
potential is positive on the right hydrogen to push the
spin-up electron density to the left hydrogen atom and is
negative on the left hydrogen atom to attract the spin-up
electron density. The spin-up embedding potential produces
the spin-up electron density that is exactly one half of the
total electron density of H2. Due to the symmetry, similar
results are obtained for the spin-down embedding potential
(Fig. 3(d)).

FIG. 3. (a) The structure of the H2 molecule. Subplots (b) and (d) are the
spin-up and spin-down embedding potentials. The isosurface value is 0.1 a.u.
The blue represents a negative potential (−0.1 a.u.) and the yellow represents
a positive embedding potential (0.1 a.u.). (c) The contour plot of the spin-up
ndiff (r⃗ ). Due to the symmetry, the spin-down ndiff is not shown.

The convergence of our iterative embedding potential
solver on this H2 molecule is fast, and the W functional
changes less than 10−4 hartree after 15 iterations. The quality
of the embedding potential is good and can be assessed based
on the difference between the reference density and the sum
of subsystem electron densities, i.e.,

ndiff ,σ(r⃗) = nref
total,σ(r⃗) −


K

nK,σ(r⃗).

The contour plot of spin-up ndiff (r⃗) is shown in Fig. 3(c)
with the plane passing through the two hydrogen atoms. The
maximum density difference is on the order of 10−6 1/bohr3,
indicating a good quality of the calculated embedding
potential.

B. A metallic system: The Fe5 cluster

We choose a Fe5 cluster (Fig. 4), which has a high
magnetic moment. This Fe5 cluster is extracted from a Fe bcc
(110) surface and has two layers. The top layer has one Fe
atom, and the second layer has four Fe atoms. The magnetic
moment on each Fe atom is similar, with an average magnetic
moment µ̄Fe of 3.98 µB.

We consider two partitioning schemes which are
described in Fig. 4. In both schemes, each subsystem is
set to neutral in our calculations. The magnetic moment of
each subsystem is manually set to Nnatom × µ̄Fe, where Nnatom

is the number of Fe atoms in each subsystem.
The spin-polarized embedding potentials for the partition-

ing scheme I are shown in Figs. 5(a) and 5(b). The embedding
potentials are negative between the two subsystems to attract
electrons to form the metallic bonds. The spin-polarized
electron densities are shown in Figs. 5(c)-5(f). The top Fe atom
has nearly 6 spin-up and 4 spin-down electrons; therefore its
spin-up electron density is almost spherical, due to the fact
that its spin-up d orbitals are almost filled. We observe that
the spin-down electron density of the top Fe atom is of
the dx2−y2 type (Fig. 5(d)). For the subsystem 2 (the lower
four-Fe plane), the spin-up electron density again has no
special feature, since all the spin-up d orbitals are nearly filled
completely (Fig. 5(e)). Adjacent Fe atoms form the metallic
bonds (Fig. 5(f)).

To better assess the convergence rate of our method, we
define

FIG. 4. The two partitioning schemes used for the Fe5 cluster. (a) The scheme
I: the top Fe atom (in the green dashed box) is the subsystem 1 and the other
four Fe atoms are (in the blue dashed box) the subsystem 2. (b) The scheme
II: each Fe atom is considered as a subsystem.
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FIG. 5. (a) The spin-up and (b) spin-down embedding potentials for the Fe5
cluster obtained for the partitioning scheme I. The isosurface value is 0.05 a.u.
The blue region represents a negative (attractive) potential. The yellow region
represents a positive (repulsive) potential. (c) The spin-up and (d) spin-down
electron densities for the subsystem 1 (the top Fe atom). (e) The spin-up and
(f) spin-down electron densities for the subsystem 2 (the lower four-Fe plane).

nconv = max{|nm
j (r⃗) − nm−1

j (r⃗)|},
where j is the subsystem index and m is the iteration number.
The change of nconv with the iteration number is plotted
in Figs. 6(a) and 6(b) for both partitioning schemes. The
convergence rates are good. For both partitioning schemes,
after about 10 iterations, nconv changes less than 0.001 bohr−3

in all subsystems. KS-DFT can be difficult to converge for
a single Fe atom, which makes it numerically challenging
to solve for embedding potentials with our previous OEP
method.20 Here we observe that our iterative embedding
potential solver is robust for this Fe5 cluster which has a
high magnetic moment.

The quality of the embedding potentials can depend on
two factors: (1) how much penalty coefficient is employed in
the OEP method for regularizing the embedding potential and
(2) how stable the embedding potential solver is. In Figs. 7(a)

FIG. 6. The convergences of our embedding potential solver, measured by
nconv. The x axis is the iteration number. The subplots (a) and (b) are the
results for the Fe5 cluster. The subplot (a) is for the partitioning scheme I
and the subplot (b) is for the partitioning scheme II. The subplots (c) and (d)
are the results for the CoCl2−4 complex. The subplot (c) is for the partitioning
scheme I and the subplot (d) is for the partitioning scheme II.

FIG. 7. The contour plots of ndiff (r⃗ ) for the Fe5 cluster with the partitioning
scheme II ((a) and (b)), and for the CoCl4 complex with the partitioning
scheme II ((c) and (d)). In the subplots ((a) and (b)), the slice plane is the
four-Fe plane (Fig. 4). For the CoCl4 case, the slice plane passes through
Co and two nearby Cl atoms. The contour interval is 1×10−4 bohr−3 in all
subplots. The spin-up ndiff are shown in (a) and (c). The spin-down ndiff are
shown in the subplots (b) and (d).

and 7(b), the spin-up ndiff (r⃗) is on the order of 10−5 bohr−3

and the spin-down ndiff is on the order of 10−4 bohr−3. In
both cases, we observe that ndiff is relatively large in the
core regions, but is much smaller in the bonding regions.
The largest ndiff among the four bond midpoints (the bonds
are denoted by the blue dashed lines) is 3 × 10−6 a.u. and
1.3 × 10−5 a.u. for the spin-up (Fig. 7(a)) and the spin-down
cases (Fig. 7(b)), respectively. From a chemical point of
view, a small ndiff in the bonding region indicates that the
interaction between subsystems can be accurately represented
by the embedding potentials. To better assess the accuracy, we
compute the relative error, defined as ndiff (r⃗)/n(r⃗). The largest
relative error among the four bond midpoints is 1.2 × 10−4 and
5.6 × 10−4 for the spin-up case (Fig. 7(a)) and the spin-down
(Fig. 7(b)) case, respectively, indicating that the reference
density is well reproduced.

C. An ionic system: Cobalt tetrachloride

We test our method on an ionic system: the CoCl2−4
complex, whose structure is shown in Fig. 8(a). Formally,
each chlorine atom possesses one extra electron and is closed
shell. The cobalt has a net charge of +2, and its five d orbitals
are re-ordered in the way that the dx2−y2 and dz2 are lower in
energy and are doubly occupied. The other three d orbitals are
higher in energy and are singly occupied, based on the crystal
field theory.62 Approximately the Co has a magnetic moment
of 3 µB.

To demonstrate the robustness of our method, we also
consider two partitioning schemes. In both schemes, the Co
is considered as one subsystem. In the partitioning scheme I,
the four Cl atoms are considered as one subsystem. In the
partitioning scheme II, each chlorine atom is considered as
one subsystem. In both partitioning schemes, we assign five
spin-up electrons and three spin-down electrons to the Co.
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FIG. 8. (a) The structure of the CoCl2−4 complex. We show the results for the
partitioning scheme I. (b) The contour plot of the spin-up embedding potential
with the contour interval of 0.1 a.u. (c) The contour plot of the spin-down
embedding potential with the contour interval of 0.3 a.u. (d) The spin-up and
(e) spin-down electron densities of the subsystem 1 (the Co cation) with the
isosurface value of 0.01 bohr−3. (f) The spin-up and (g) spin-down electron
densities of the subsystem 2 (the four Cl anions) with the isosurface value of
0.01 bohr−3.

In the partitioning scheme I, we assign 16 spin-up and 16
spin-down electrons to the Cl4−4 subsystem. In the partitioning
scheme II, we assign 4 spin-up electrons and 4 spin-down
electrons to each chlorine. The assignments are based on the
formal charges of the Co and Cl in CoCl2−4 .

The spin-polarized embedding potentials for the parti-
tioning scheme I are shown in Figs. 8(b) and 8(c). The planes
are spanned by the Co and the other two nearby Cl atoms.
Both the spin-up and spin-down embedding potentials are
approximately −0.5 hartree in the interstitial region between
Co and Cl to attract Cl’s electron density toward the Co. The
subsystem electron densities are shown in Figs. 8(d)-8(g).
The electron densities of the Cl are approximately spherical
and are deformed toward the Co, due to the electrostatic
attraction from the positively charged cobalt. The spin-up
electron density of the Co is approximately spherical as well,
since the spin-up d orbitals are almost filled. Its spin-down
electron density shows more d orbital character (Fig. 8(e)).

Our method converged well on this CoCl2−4 complex as
well. For the partitioning scheme I, after approximately 20
iterations (Fig. 6(c)), nconv drops to 5 × 10−4 bohr−3 in the
Cl4 subsystem and to 10−3 in the Co subsystem. Similar
convergence rate is observed for the partitioning scheme II
(Fig. 6(d)). To assess the quality of the embedding potential,
in Figs. 7(c) and 7(d), the spin-up and spin-down ndiff are both
on the order of 10−4 bohr−3. ndiff is large mainly near the core
regions of the cobalt. At the bond midpoints (midpoints of the
blue dashed lines), the spin-up and spin-down ndiff ’s are small
and are on the order of 10−5 a.u. and 10−6 a.u., respectively.
Among the three bond midpoints, the largest relative error
(ndiff (r⃗)/n(r⃗)) is 5 × 10−4 and 4 × 10−4 for the spin-up and the
spin-down cases, respectively.

D. Relax the magnetic moments of subsystems
and subsystems share a common chemical potential

Our new method can also (a) relax the magnetic moment
of each subsystem and (b) let all subsystems share the same

FIG. 9. The convergences of our embedding potential solver, measured by
nconv (in a.u.). We show the nconv for the nickel subsystem. The convergences
of the oxygen subsystem are similar and are not shown here. The x axis is
the iteration number. We consider three cases: (a) the magnetic moment in
each subsystem is fixed (“Fixed mag.”), (b) the magnetic moment in each
subsystem is relaxed (“Relaxed mag.”), and (c) the Ni and O subsystems share
common chemical potentials (“Global Fermi Level”).

chemical potential. We demonstrate these two features with a
NiO molecule, whose magnetic moment is two.63 The NiO is
relaxed with KS-DFT-PBE. The relaxed bond length is 1.66 Å.
We treat Ni and O as two subsystems. The convergence of
our method is again fast as shown in Fig. 9. The nconv in each
subsystem converges to the order of 10−3 after 20 iterations.
The mismatch between the sum of subsystem densities and
the reference electron density is smaller than 4 × 10−3 bohr−3

after 20 steps in all cases.
The electron density of the NiO molecule is partitioned

into Ni’s and O’s densities. After integrating their densities,
we found a 0.44e charge transfer from Ni to O, which is
close to the 0.57e charge transfer obtained using the Mulliken
population analysis based on the correlated wave-function
calculations.63 This shows that DFET employing our new
embedding potential solver could yield a physical electron
density partitioning.

E. A periodic system: The Fe bcc(110) surface

Finally we consider a practical example: to calculate
the embedding potential for the top layer of the Fe bcc(110)
surface. The top layer is considered as the subsystem 1 and the
rest of the slab is considered as the subsystem 2 (Fig. 10(a)).
Subsystems are neutral and their electron numbers are fixed
during the calculations. We allow the magnetic moment in
each subsystem to relax. The convergence is again fast.
After 11 iterations, nconv drops below 10−4 bohr−3. After
four iterations, the maximum difference between the sum of
subsystem electron densities and the reference total electron
density drops below 2 × 10−3 bohr−3. The distribution of the
total magnetic moment over the two subsystems is relatively
uniform. The magnetic moments are 13.3 µB and 36.9 µB in
the subsystem 1 and the subsystem 2, respectively, roughly
proportional to their sizes.

To better visualize the subsystems, their densities are
plotted in Fig. 10. Subsystems are well separated and the
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FIG. 10. (a) The Fe bcc(110) surface slab. The top layer is the subsystem
1 (in the dashed box), and the lower three layers are the subsystem 2. (b)
The spin-up and (c) spin-down electron densities of the subsystem 1 (the top
layer). (d) The spin-up and (e) spin-down electron densities of the subsystem
2. The isosurface values are 0.01 (in a.u.) for all subplots.

FIG. 11. The spin-up (middle) and spin-down (right) embedding potentials,
with the top layer considered as the subsystem 1 and the rest Fe atoms
considered as the subsystem 2. The contour plane is perpendicular to the a⃗
axis and is passing through the circled copper atoms. The circled Fe atoms on
the leftmost figure are marked on the contour plots. Units are bohr−3.

embedding potential is well localized at the interface (Fig. 11),
which is due to the strong screening in metals.

This example is useful in practice. It is related to the
modeling of these heterogeneous catalysis that involve iron,
such as the Fischer-Tropsch and the Haber processes. The
efficient embedding potential solver developed in this work
could let us study the outer layer of a catalyst with high-level
theories by replacing the subsurface with a first-principle spin-
polarized embedding potential, which consequently reduces
the computational cost. One possible choice is to perform
embedded calculations of the top layer using the EXX+RPA.
The EXX+RPA has showed good accuracy for the adsorption
of molecules on transition metals;64 however its computational
scaling is poor.65 Embedded EXX+RPA calculations could be
a computationally feasible way to help us gain insight into the
heterogeneous catalysis with a modest computational cost.

VI. WHY DOES THE ITERATIVE EMBEDDING
POTENTIAL SOLVER WORK?

There might be two reasons for the fast convergences
of the new embedding potential solver observed in above

examples. The first reason is due to the use of finite
temperature (the Fermi-Dirac smearing with a smearing
temperature of 0.1 eV) in the non-self-consistent KS-DFT
calculations on subsystems. This helps us to avoid the so-
called “Fermi statistics” problem,66 in which the frontier KS
orbitals (the orbitals whose eigenvalues are close to the Fermi
energy) repeatedly cross the Fermi level, which in turn makes
the system’s density changes radically from one iteration to
the next iteration. The “Fermi statistics” problem makes the
self-consistency of KS-DFT calculations difficult to reach. In
practice, we observed that our embedding potential solver has
trouble to converge, if the smearing temperature was set to be
very small.

Another reason for the good convergences of our
embedding potential solver could be that the wild changes
of the subsystems densities can be effectively suppressed
due to the fact that the sum of them needs to be equal to
the reference density. For example, the KS-DFT took many
iterations to converge for generating the reference density for
the Fe5 cluster. On the other hand, the convergence of the
embedding potential solver was fast for this Fe5 cluster.

VII. CONCLUSIONS

By extending the density functional embedding theory
to finite temperature, we have largely removed the non-
uniqueness of the embedding potential. A unique embedding
potential makes DFET a tractable multi-physics method
for material modeling. From a practical point of view,
such extension is physical, since materials work at finite
temperature. We then developed an efficient iterative method
for calculating embedding potentials. Our method does not
require performing self-consistent KS-DFT calculations on
subsystems, and therefore avoids the convergence issue
in our previous method. The performance of our method
is assessed on several spin-polarized systems. Embedding
potentials with good qualities were obtained. The efficient
embedding potential solver developed in this work could make
it possible to perform embedded CW calculations or embedded
KS-DFT calculations employing advanced orbital-based XC
functionals to study challenging material problems, such as
the heterogeneous catalysis involving iron, cobalt, and nickel,
the complex spin configurations of magnetic impurities on
graphene,67 and the proton-coupled electron-transfer catalyzed
by transition metal compounds.68
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APPENDIX A: A PROOF FOR THE UNIQUENESS
OF THE EMBEDDING POTENTIAL
FOR THE CASE THAT SUBSYSTEMS
ARE TREATED WITH THE GRAND CANONICAL
ENSEMBLE AND FIXED ELECTRON NUMBERS

Assume that there are two embedding potentials Vemb and
V ′emb that give the ground state density operators {ρA, ρB} and
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{ρ′A, ρ′B}, respectively. In each subsystem, chemical potential
is adjusted to conserve subsystem electron numbers to be QA

and QB, respectively. The adjusted chemical potentials are
{µA, µB} and {µ′A, µ′B} for unprimed and primed cases. The
grand canonical potential of subsystem A for the primed case is

Ω
′
A = Trρ′A

(
H ′A − µ′AN +

1
β

ln ρ′A

)
< TrρA

(
H ′A − µ′AN +

1
β

ln ρA

)
= ΩA + TrρA(V ′emb − Vemb) +QA(µA − µ′A). (A1)

For subsystem B, we have

Ω
′
B < ΩB + TrρB(V ′emb − Vemb) +QB(µB − µ′B). (A2)

Summing up above two equations, we obtain (note that
chemical potentials from subsystem A and B are not equal)

Ω
′
A +Ω

′
B < ΩA +ΩB

+


dr3ntotal(r⃗)(V ′emb(r⃗) − Vemb(r⃗))

+QA∆µA +QB∆µB, (A3)

where ∆µA = µA − µ′A and ∆µB = µB − µ′B. By exchanging
primed and unprimed systems, we have

ΩA +ΩB < Ω′A +Ω
′
B

+


dr3ntotal(r⃗)(Vemb(r⃗) − V ′emb(r⃗))

+QA(−∆µA) +QB(−∆µB). (A4)

Summing up Eqs. (A3) and (A4), we reach 0 < 0, which is
false. Therefore the embedding potential is unique.

APPENDIX B: THE MINIMUM OF THE HELMHOLTZ
FREE ENERGY FUNCTIONAL IS UNIQUE

Our proof is a straightforward extension of Mermin’s
work on grand canonical ensemble DFT. We consider ρ , ρ0
and define a λ dependent density matrix as

ρλ = exp(−β(H + λ∆))/Tr exp(−β(H + λ∆)),
with ∆ = − 1

β
ln ρ − H . It is easy to check that ρλ connects

ρ and ρ0 as λ varies from 0 to 1. Similarly, we define a
λ-dependent Helmholtz energy to connect A[ρ] and A[ρ0] as
λ varies from 0 to 1 as

A[ρλ] = Trρλ(H + λ∆ +
1
β

ln ρλ) − λTrρλ∆. (B1)

We will show that A[ρ] > A[ρ0]. The difference between A[ρ]
and A[ρ0] can be formally written as

A[ρ] − A[ρ0] =
 1

0

d
dλ

A[ρλ]dλ. (B2)

The first term on the RHS of Eq. (B1) is the Helmholtz
free energy of the Hamiltonian H + λ∆, with ρλ being
the stationary point. Therefore, to calculate Eq. (B2), only
the partial derivative with respect to λ is needed for the
first term on the RHS of Eq. (B1). Eq. (B2) then becomes

d
dλ

A[ρλ] = −λTr
�

d
dλ

ρλ
�
∆. By setting the chemical potential

µ = 0, the steps A7-A12 in Ref. 45 can be followed to show

d
dλ

A[ρλ] = λ

 β

0
dβ′



y†y

�
λ
, (B3)

where y(λ) = ∆λ( 1
2 β
′) − ⟨∆⟩λ. Eq. (B3) is always non-

negative and is only zero when y = 0. For y = 0, ∆ must
be an identity matrix multiplied by a constant, which gives
ρ0 = ρ. Therefore, for ρ0 , ρ, Eq. (B3) is always positive.
We therefore have showed that for canonical ensemble, ρ0,
the stationary point of the A[ρ] is the only global minimum of
A[ρ].
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