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ABSTRACT: We introduce embedded mean-field theory (EMFT), an
approach that flexibly allows for the embedding of one mean-field theory in
another without the need to specify or fix the number of particles in each
subsystem. EMFT is simple, is well-defined without recourse to parameters, and
inherits the simple gradient theory of the parent mean-field theories. In this
paper, we report extensive benchmarking of EMFT for the case where the
subsystems are treated using different levels of Kohn−Sham theory, using PBE
or B3LYP/6-31G* in the high-level subsystem and LDA/STO-3G in the low-
level subsystem; we also investigate different levels of density fitting in the two
subsystems. Over a wide range of chemical problems, we find EMFT to perform
accurately and stably, smoothly converging to the high-level of theory as the
active subsystem becomes larger. In most cases, the performance is at least as
good as that of ONIOM, but the advantages of EMFT are highlighted by
examples that involve partitions across multiple bonds or through aromatic
systems and by examples that involve more complicated electronic structure. EMFT is simple and parameter free, and based on
the tests provided here, it offers an appealing new approach to a multiscale electronic structure.

■ INTRODUCTION

Mean-field theories of electronic structure, including Kohn−
Sham density-functional theory (KS-DFT)1,2 and density-
functional tight-binding (DFTB),3−5 offer powerful approaches
for condensed-phase simulations. The success of these methods
rests upon their unique combination of generality, computational
efficiency, and accuracy for a wide range of applications. The
methods are general in the sense that they can produce an energy
at a consistent level of theory for any configuration of any set of
atoms, without the need for any further system-specific
considerations. A range of compromises are available between
accuracy and computational efficiency. Approximate hybrid DFT
methods, such as B3LYP,6 offer very good accuracy for a range of
chemical problems; but their computational cost severely limit
length- and time scales in molecular dynamics simulations. Much
more computationally efficient approaches are available, such as
DFTB, but their efficiency comes at the price of reduced accuracy
(and in some cases reduced generality).
Mitigating this trade-off between accuracy and efficiency,

subsystem embedding has emerged as a powerful strategy for
modeling the electronic structure of complex systems. In
embedding methods, a high-level quantum-mechanical descrip-
tion of a chemically active subsystem is embedded in a
surrounding environment described using a more approximate
theory. The advantage of this approach is that it provides high
accuracy for regions that demand it while avoiding the
computational cost of a high-level calculation on the whole
system. Notable examples of subsystem embedding include

QM/MM and ONIOM, although there are many other
manifestations of the idea.7−22

Despite their tremendous successes, QM/MM, ONIOM, and
other widely used embedding schemes are not without problems
that limit their applicability. In terms of generality, the way in
which the partition is performed requires a priori knowledge of
the chemical bonding, and the choice is limited by practical
considerations. First, although it may be feasible to partition
across an aliphatic C−C bond, it may be less straightforward for a
conjugated or heteronuclear system. Second, the need to specify
the fixed number of electrons per subsystem restricts the
applicability of such methods to strongly insulating systems for
which this number is unambiguous. Both of these issues are
exacerbated in the description of chemical reactions for which the
bonding connectivity (and electron number) may change as a
function of nuclear coordinates. Some embedding theories, most
notably density-matrix embedding theory19 and dynamical
mean-field theory,23 remove the need to fix subsystem particle
numbers in the context of embedded correlated-wave function
calculations; in this work, we present a new embedding theory
that achieves a similar advantage in the context of embedded
mean-field calculations.
In terms of accuracy, widely used embedding methods, such as

QM/MM and ONIOM, involve approximations in the
description of the subsystem partition that significantly impact
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the overall accuracy of the calculation. QM/MM typically
accounts for electrostatic interactions between subsystems
through polarization of the QM region by MM point charges,
while exchange-repulsion, dispersion, and other effects are
approximated by simple empirical interaction potentials. For
the case of ONIOM, a low-level calculation performed on the full
system is corrected by the difference between high-level and low-
level calculations performed on a subsystem, such that the
interaction between subsystems is treated at the low level of
theory.
Both approaches involve chemical termination of the

subsystem that is treated at the higher level of theory, typically
by introducing constructs such as link atoms24−30 or link
orbitals31−39 to satisfy the valency of the atoms at the subsystem
interface. Moreover, both approaches require the selection of a
fixed electron number in the high-level subsystem, and neither
allows changes in the number of electrons per subsystem as a
function of the nuclear coordinates. These limitations present
clear challenges for the description of processes where the
chemical change cannot be localized to a small number of atoms.
In this paper, we describe embedded mean-field theory

(EMFT), a subsystem embedding approach that addresses many
of these challenges. By partitioning directly at the level of the
atomic-orbital basis set, EMFT provides a mean-field description
of the entire system that seamlessly combines different levels of
theory for different subsets of atoms. There are no link atoms,
link orbitals, geometry-dependent parameters or restrictions on
particle number in subsystems, and full self-consistency between
subsystems is achieved.

■ THEORY
The central idea of EMFT is to partition the basis set into subsets
A and B, block the one-particle density matrix accordingly

and compute the energy as a functional ofD with different levels
of treatment for each sub-block. Given two different mean-field
theories with energies

= +E GD DH D[ ] tr [ ]i i0 (2)

that differ only in the description of the two-electron terms (G1
or G2), the EMFT energy is obtained by minimizing

= + + −E G G GD DH D D D[ ] tr [ ] ( [ ] [ ])0 2 1
AA

2
AA

(3)

with respect to all elements of the density matrix D. (Entirely
analogous equations follow in the case where the two methods
also differ in their core Hamiltonians).
This theory has a number of appealing properties, not least

being its simplicity. EMFT is itself a mean-field theory with a
Fock operator simply obtained by differentiation

= ∂
∂αβ

αβ
F

E
D

D[ ]

and simple gradients with respect to nuclear displacements given
by

∂
∂

= −E
x
D

DF WS
[ ]

tr trx x( ) ( )
(4)

whereW is the energy-weighted density and F(x) and S(x) are the
derivatives of the Fock and overlap matrices, respectively.
Similarly, EMFT response theories, such as time-dependent
EMFT (TD-EMFT), will be simple and straightforward.
Two additional advantages emerge from the fact that the

number of electrons in each subsystem is determined directly
from minimization of the EMFT energy. The first is that charge
flow between the subsystems is naturally included, and the
second is that there is no need for the user to specify a priori the
number of electrons in each subsystem. Beyond the definition of
the two mean-field theories and the list of atomic orbitals in each
subsystem, there are no additional parameters.
Finally, we note that the individual subsystems in EMFT are

treated as open quantum systems, such that the entanglement
between them is fully included at the mean-field level. The
EMFT framework is general, enabling the embedding of any
mean-field theory in any other. Natural examples for the
description of subsystem A might include hybrid,6,40 double-
hybrid,41 or range-separated hybrid42 functionals; as well as self-
consistent random-phase approximations.43,44 Subsystem B
might be described by more computationally efficient DFT
methods or DFTB.3−5

In this work, we investigate the accuracy of the EMFT
framework using KS-DFT with different exchange-correlation
functionals for the two subsystems (i.e., GGA or hybrid
functionals for subsystem A, and LDA45,46 for subsystem B).
We also investigate the use of different basis sets for the two
subsystems (e.g., minimal basis set in subsystem B), and finally,
we investigate the use of different density-fitting basis sets for the
two subsystems. This enables, for example, a B3LYP/6-31G*47

treatment of subsystem A in an LDA/STO-3G48,49 treatment of
subsystem B, at a fraction of the cost of the full B3LYP/6-31G*
calculation on the whole system.

EMFT for Hybrid Functionals. In the case where the two
mean-field theories are KS-DFT with different functionals, with
possibly a hybrid functional for the high-level region, the energy
expression is given by

α

= + + −

+ + + −

E E E E

E
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Here EJ,1 and EJ,2 are high- and low-level models for the Coulomb
energy; Exc,1 + αEEX

A is the (possibly hybrid) high-level exchange-
correlation functional; and Exc,2 is the low-level functional.
We have investigated two possible schemes for the treatment

of exact exchange. In the simpler scheme, denoted EX0, the exact
exchange in subsystem A is expressed

∑ αγ βδ= − |
αβγδ

αβ γδ
∈

E D D
1
4

( )
A

EX0
A AA AA

This obviously implies great computational savings, reducing the
unscreened cost of evaluating the exact exchange contribution by

(( / ) )A
4 , where A and are measures of the size of

subsystem A and of the whole system. For chemical processes
that involve atoms close to the partition between subsystems, we
have found that a second, slightly more complicated formalism
performs more reliably. In this approach, labeled EX1, the
exchange energy is computed as

∑ αγ βδ= − |
αβ γδ

αβ γδ
∈

E D D
1
4

( )EX1
A

A;

AA

(6)
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which includes additional couplings to subsystem B, and still
offers a computational saving versus the full exchange evaluation

of (( / ) )A
2 . Throughout this study, numerical results for

EMFTwith hybrid functionals utilize the EX1 implementation of
the exchange energy.
EMFT for Density Fitting. Equation 5 fully defines the

EMFT approach to treating subsystems with different density-
fitting basis sets,50−52 and density fitting for both the
Coulomb53,54 and exchange50 energy terms is used throughout
this work. In terms of the standard density-fitting intermediate
BK
αβ = [J−1/2]KL(L|αβ) where JKL = (K|L), the Coulomb energy

contribution is thus

+ −

= + −αβ κ
αβ

κ
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γδ αβ
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where summation over repeated dummy indices is implied, and
K and κ index large and small density-fitting auxiliary basis sets,
respectively. In the limit of well-separated subsystems, this is
equivalent to a standard density-fitting treatment of the
Coulomb problem for the whole system, but with a large
density-fitting basis on the atoms of subsystem A and a small
fitting set in subsystem B. For interacting subsystems, these two
approaches are no longer identical; however, they are closely
related, and for simplicity of implementation, we adopt the latter
in this work.

■ BENCHMARK TESTS

For a series of benchmark tests, we illustrate the performance of
EMFT for implementations in which a higher-level KS-DFT
approximation is used to describe part of the molecular system
(subsystem A) and a lower-level KS-DFT approximation is used
to describe the remainder of the system (subsystem B). The KS-
DFT approximations for each subsystem vary with regard to
three attributes: the atomic-orbital basis set, the exchange-
correlation functional, and the density-fitting basis set used for all
two-electron integrals. We use a notation for describing these
EMFT calculations, such that any attribute that varies between
the two subsystems is explicitly stated. For example, EMFT (6-
31G*:STO-3G) refers to a calculation that uses the same
exchange-correlation functional and the same density-fitting
basis for both subsystems, while using the 6-31G* atomic orbital
basis set for subsystemA and STO-3G for subsystem B. Similarly,
EMFT (PBE:LDA, 6-31G*:STO-3G, DF:DF(s)) refers to a
calculation in which all three attributes differ between the
subsystems. In specifying the density-fitting basis sets, we use DF
to indicate the Ahlrichs density-fitting basis51,52 for calculations
in which PBE55,56 is the high-level exchange-correlation
functional and to indicate cc-pVDZ/JKFIT50 for calculations in
which B3LYP6 is the high-level exchange-correlation functional;
DF(s) indicates the subset of the corresponding fitting basis
consisting of only the s-type functions. All EMFT calculations
using the PBE functional in this section are performed using an
in-house code, whereas all EMFT calculations using the B3LYP
functional are performed using a modified version of the Molpro
software package.57,58

Figure 1. Embedding calculations for the 1-chlorodecane/1-decanol substitution reaction. (a) Error in the reaction energy as a function of the size of
subsystem A for variants of EMFT. (b) Comparison of EMFT, ONIOM, and vacuum embedding for the error in the reaction energy. (c) Error in the
EMFT reaction energy using a hybrid exchange-correlation functional in subsystemA. (d) Reactant and product structures. All errors are plotted relative
to the reaction energy at the higher KS-DFT level of theory: −87.3 kcal/mol for panels (a) and (b) and −89.0 kcal/mol for panel (c). The reaction
energy using the low-level (LDA/STO-3G/DF(s)) KS-DFT is −150.4 kcal/mol.
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For comparison, we also provide results using the ONIOM
method59 with the subsystems treated using different levels of
KS-DFT (denoted, for example, ONIOM (PBE:LDA, 6-
31G*:STO-3G)). Additionally, we present results obtained
using KS-DFTwith vacuum embedding, such that subsystem A is
simply terminated with link-atoms and interactions with
subsystem B are neglected. Both the ONIOM and vacuum
embedding calculations are implemented with H atoms
terminating subsystem A, and for neither method is density
fitting employed. For the ONIOM calculations, terminal H
atoms are positioned according to the default parametrization
scheme in Gaussian 09,59,60 and for the vacuum embedding
calculations, the terminal H atom positions are optimized at the
high-level theory with all other atom positions held fixed; EMFT
involves no such parametrization or optimization, since it does
not employ the explicit chemical termination of subsystem A. For
cases in which the partition between subsystems involves
splitting across two double bonds, the ONIOM and vacuum
embedding calculations are performed using both singlet and
triplet spin states of subsystem A;59 again, we emphasize that no
such designations or choices are needed for EMFT, which at no
stage involves a separate calculation on a terminated version of
either subsystem. All ONIOM and vacuum embedding
calculations are performed using Gaussian 09.60

Throughout this section, unless otherwise stated, figures that
are plotted as a function of the number of carbon atoms in
subsystem A assume that all noncarbon atoms attached to those
carbon atoms are likewise included in subsystem A. We also use
the convention that for the case in which zero carbon atoms are
included in subsystem A, the result corresponds to treating all
atoms with the low-level KS-DFT. Unless otherwise stated, data

are presented for molecular geometries that are optimized at the
B3LYP/6-311G** level of theory.6,60−62

Partitioning Across a Single Covalent Bond: A Simple
Substitution Reaction. Results for the 1-chlorodecane/1-
decanol substitution reaction are plotted in Figure 1. Errors in
EMFT reaction energies using GGA and LDA functionals are
presented in panel a, relative to the high-level KS-DFT result. It is
clear that EMFT works well for this system, with the error for all
variants becoming chemically negligible with only two carbon
atoms included in subsystem A, despite the fact that the low-level
(LDA/STO-3G/DF(s)) KS-DFT is in error by over 60 kcal/mol
for this reaction. Comparison of the EMFT results indicates that
the errors due to the difference in the subsystem atomic-orbital
basis sets is significantly larger than errors due to the choice of
exchange-correlation functional or density-fitting basis set,
although all errors are small in this case.
In panel b, results obtained using EMFT, ONIOM, and

vacuum embedding are compared. Like EMFT, both ONIOM
and vacuum embedding work well for this example that involves
simple partitioning across a single covalent bond.
Panel c reveals similar behavior for the implementation of

EMFT using the hybrid exchange-correlation functional B3LYP
in the EX1 approximation of eq 6. The accuracy of EMFT
(B3LYP:LDA, 6-31G*:STO-3G, DF:DF(s)) is very similar to
that of the corresponding GGA calculation. This result is notable,
given that the EMFT (B3LYP:LDA, 6-31G*:STO-3G,
DF:DF(s)) calculation involves approximations in both the
exchange and Coulomb energy contributions associated with the
mixed density-fitting basis, whereas the approximations
associated with the mixed density-fitting basis appear only for

Figure 2. Embedding calculations for a Diels−Alder reaction involving an extended alkene chain. Results are presented as in Figure 1. All errors are
plotted relative to the reaction energy at the higher KS-DFT level of theory: −26.7 kcal/mol for panels a and b and −21.0 kcal/mol for panel c. The
reaction energy using the low-level (LDA/STO-3G/DF(s)) KS-DFT is −82.1 kcal/mol.
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the Coulomb term in the EMFT (PBE:LDA, 6-31G*:STO-3G,
DF:DF(s)) calculation.
Partitioning in a Conjugated System: The Diels−Alder

Reaction. Figure 2 presents results for a Diels−Alder reaction
between the 1,3-butadiene and conjugated octadecanonaene
hydrocarbons. To be clear, the x-axis in panels a−c indicates the
number of carbon atoms from the octadecanonaene chain (panel
d, top) that are included in subsystem A, starting with the two
octadecanonaene carbon atoms to which the butadiene
associates and increasing symmetrically toward the two ends of
the octadecanonaene chain. For the case in which zero carbon
atoms are included in subsystem A, all atoms in the reactant and
product are treated at the lower level of theory, but for all other
cases, the atoms associated with the butadiene reactant are
included in subsystem A.
As is seen in panel a, EMFT performs well for this reaction,

despite the fact that it involves partitioning across a conjugated
system. The largest source of error in the EMFT results is again
due to the use of different subsystem atomic-orbital basis sets,
with errors due to the choice of the exchange-correlation
functional and the density-fitting basis vanishing upon inclusion
of only four carbon atoms in subsystem A. Panel b shows that
both vacuum embedding and ONIOM exhibit significant errors
for this reaction, which converge slowly with respect to the size of
subsystem A and which exhibit substantial oscillations due to the
changes in the bonds across which the subsystems are divided.
Although the triplet implementations of these methods are
consistently more accurate than the corresponding singlet
implementations, it is clear that EMFT compares favorably
with ONIOM and vacuum embedding, both in terms of accuracy
and in terms of the simplicity of avoiding the need for a singlet/

triplet choice of spin-state. Finally, panel c illustrates the
comparison of EMFT and ONIOM for hybrid functionals, the
results of which are consistent with those seen for nonhybrid
functionals in panel b. These results make clear that even for
simple organic chemical reactions on relatively small systems,
EMFT offers potential advantages in comparison to both
ONIOM and vacuum embedding.

Partitioning in a Graphene-like System: Hydrogena-
tion of Pentacene. Figure 3 presents results for the terminal
hydrogenation reaction of pentacene, which is a more
challenging case for embedding methods, because of the
graphene-like conjugation of the reactants and products. The
x-axis in panels a−c indicates the number of carbon atoms from
pentacene that are included in subsystem A, starting with the two
carbon atoms that are involved in the chemical transformation at
one end of the pentacene molecule (panel d).
As is clear from panel a, EMFT again performs well for this

system, converging quickly with respect to the size of subsystem
A. Unlike the previous example, in which the only significant
source of error came from the use of different subsystem atomic-
orbital basis sets, this application of EMFT exhibits errors of
similar magnitude from the use of different subsystem exchange-
correlation functionals. It is interesting, however, that these basis-
set and functional errors largely cancel in this example, such that
errors in EMFT (PBE:LDA, 6-31G*:STO-3G, DF:DF(s))
become negligible with only eight carbon atoms in subsystem A.
In contrast to the EMFT results in panel a, panel b shows that

the various ONIOM and vacuum embedding implementations
exhibit significant errors for this reaction, and even more
disturbingly, these large errors do not significantly decay with the
size of subsystem A. This illustrates the fact that for systems in

Figure 3. Embedding calculations for the terminal hydrogenation of pentacene. Results are presented as in Figure 1. All errors are plotted relative to the
reaction energy at the higher KS-DFT level of theory: 22.6 kcal/mol for panels a and b and 32.7 kcal/mol for panel c. The reaction energy using the low-
level (LDA/STO-3G/DF(s)) KS-DFT is 6.6 kcal/mol.
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which there is no clear distinction between single and double
bonds, the ONIOM method of subsystem partitioning will
potentially incur well-known errors. The performance of EMFT
using a hybrid functional (panel c) is comparable to the PBE
results, but ONIOMwith B3LYP is more accurate than ONIOM
with PBE. Overall, errors in EMFT decay reasonably quickly for
both choices of high-level functional, whereas with ONIOM this
is only the case with one of them.
A Surprisingly Challenging Case: Deprotonation of a

Terminal Carboxylic Acid. Figure 4 presents the error in the
deprotonation energy of decanoic acid. Panel a clearly indicates
that the largest error is from mixing bases. EMFT converges
more slowly as compared to its behavior for the other reactions
discussed above. The relative error, however, becomes less than
10% of its total reaction energy after including two carbons from
the terminal. Panel b reveals that both vacuum embedding and
ONIOM perform noticeably better than does EMFT. Because
the reaction is strongly localized at the terminal carbon, even
vacuum embedding, which has no interaction between
subsystems, behaves well. Panel c shows similar trends.
It is found that the particularly poor behavior of EMFT in this

case is consistent with errors seen in other reactions that manifest
charges near the reaction centers. Mixing of two different bases
while allowing the charge flow between subsystems inevitably
leads to a spurious charge flow near the boundary. The effect of
this unphysical charge flow becomes more obvious if the reaction
accompanies a manifestation of charge, since it introduces an
unphysical electrostatic interaction.

■ GEOMETRY OPTIMIZATIONS USING EMFT

An important feature of EMFT is the simplicity of its gradient
theory (eq 4), which is essentially identical to that of KS-DFT. In
this section, we demonstrate the accuracy of geometry
optimizations performed using EMFT for the various benchmark
reactants considered above. Geometry optimizations for EMFT
are performed using an in-house code that employs G-DIIS,63

BFGS update of the Hessian matrix,64−67 and RFO optimiza-
tion.68

Figure 5 presents results for which the reactants and products
in each reaction are optimized as the size of subsystem A is varied.
The figure presents the root-mean-square deviation (RMSD)69

for the atoms in subsystem A, comparing optimized geometries
from EMFT or ONIOM to the optimized geometries obtained
from high-level KS-DFT. The EMFT results for the geometries
of these systems are striking; in all four cases, the RMSD error for
EMFT reduces to the expected accuracy of a high-level KS-DFT
exchange-correlation functional (i.e., 0.02 Å) with less than four
(and in most cases less than two) carbon atoms in subsystem A.
In contrast, ONIOM exhibits substantially larger errors in panels
(b−d), with the ONIOM results again illustrating sensitivity to
the choice of treating subsystem A as either a single or triplet spin
state. The singlet implementation of ONIOM is consistently
much worse than that of EMFT, and for the pentacene reaction
in panel c, both the singlet and triplet ONIOM results are
significantly worse than that of EMFT. Although not presented,
the reaction energy for each benchmark system, computed using
the same level of theory for both the energy difference and for the
optimized reactant and product geometries, are generally within
1 kcal/mol of the results presented in Figures 1 to 4.

Figure 4. Embedding calculations for the deprotonation of decanoic acid. Results are presented as in Figure 1. All errors are plotted relative to the
reaction energy at the higher KS-DFT level of theory: 363.1 kcal/mol for panels a and b and 363.4 kcal/mol for panel c. The reaction energy using the
low-level (LDA/STO-3G/DF(s)) KS-DFT is 460.7 kcal/mol.
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■ PARTICLE NUMBER FLUCTUATIONS
As indicated above, a strength of the EMFT scheme is that it
permits particle number fluctuations between subsystems and
does not require the number of particles in either subsystem to be
specified at any stage. As can be seen in the preceding results,
EMFT is robust even when partitioning across multiple bonds
and conjugated systems.
The standard deviation in particle number is computed from

the KS determinant |Φ⟩ as

σ = ⟨Φ| ̂ |Φ⟩ − ⟨Φ| ̂ |Φ⟩n n[ ( ) ]A 2 A 2 1/2

where n ̂A is the number operator for the symmetrically
orthogonalized atomic orbitals associated with subsystem A. In
terms of the AA block of density matrix in the symmetrically
orthogonalized atomic-orbital basis, this is given by σ = [trDAA−
tr(DAA)2]1/2. Even with a mean-field wave function, the quantum
state on some subset of the one-particle basis is typically
entangled with its environment, and this can be measured
through the von Neumann entropy measure S =−trDAA ln2D

AA.
Here, we use the DAA sub-block in the symmetrically
orthogonalized AO basis, but this is expected to have little effect
on the qualitative conclusions drawn here.
Both metrics are plotted in Figure 6 for neon dimer, ethane,

ethene, and ethyne (as representative partitions across a
nonbonding interaction and bond orders from one to three) as
a function of the internuclear separation between the atoms that
bridge the partition. All calculations are performed using PBE/6-
31G*/DF KS-DFT. It can be seen that both measures increase
considerably with increasing bond order, and in the case of single
bonds, with decreasing internuclear separation. Moreover, the

standard deviation in particle number is around 1 for cutting
across the single bond, and 1.5 for double or triple bonds. This
indicates that the choice in almost all embedding methods of
fixed particle number in each subsystem is far from the physical
situation, and emphasizes the advantage of EMFT in that it can
capture these particle number fluctuations.

■ REPRESENTATIVE APPLICATIONS
Having systematically demonstrated EMFT for a range of
benchmark systems, we now present applications of the method
to more complex systems that are of interest from the recent
computational chemistry literature. We present six additional

Figure 5. RMSD for the atoms in subsystem A, comparing optimized geometries from EMFT or ONIOM to the optimized geometries obtained from
the higher-level KS-DFT. Results are obtained for the reactant and products of the four benchmark reactions, including (a) the 1-chlorodecane/1-
decanol substitution reaction, (b) the Diels−Alder reaction, (c) the pentacene hydrogenation, and (d) the deprotonation of carboxylic acid. In all panels,
the dashed lines correspond to reactants and the solid lines correspond to products.

Figure 6.Variance in particle number (left panel) and the vonNeumann
entropy (right panel) in subsystems of neon dimer (blue), ethane
(purple), ethene (gold), and ethyne (green), defined by symmetrically
bisecting each system.
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applications, three of which correspond to ligand association
reactions in transition-metal complexes and three of which
correspond to defect formation in graphene sheets and carbon
nanotubes. We present results that illustrate the convergence of
errors in the EMFT with respect to high-level calculations
performed over the full system, illustrating the utility of the
method for realistic applications.
As before, in specifying the density-fitting basis sets, we use DF

to indicate the Ahlrichs density-fitting basis for calculations in
which PBE is the high-level exchange-correlation functional and
to indicate cc-pVDZ/JKFIT for calculations in which B3LYP is
the high-level exchange-correlation functional; DF(s) indicates
the subset of the corresponding fitting basis consisting of only the
s-type functions. Similarly, we use DF2 to indicate the Def2-SVP
density fitting basis,70 and DF2(s) denotes the subset that only
contains s-type functions.
For each calculation reported in this section, the Supporting

Information provides full details of the molecular geometries and
the specific list of atoms that are included in subsystem A. For all
plots that report errors as a function of the number of atoms in
subsystem A, the case in which subsystem A includes zero atoms
corresponds to treating the full system using the low-level KS-
DFT. All EMFT calculations in this section are performed using a
modified version of the Molpro software package, and all
ONIOM calculations are performed using Gaussian 09.

■ LIGAND ASSOCIATION IN TRANSITION-METAL
COMPLEXES

Acetonitrile Binding by a Cobalt-Based Hydrogen-
Reduction Catalyst. Cobalt diglyoxime complexes have been
recently researched as potential hydrogen reduction catalysts for
artificial solar cells and other applications.72,73 Theoretical work
in this area has focused on computing ligand-binding energies
and reduction potentials associated with key steps in the catalytic
process.71,74

In particular, we examine the utility of EMFT in describing the
binding of acetonitrile to the catalyst Co0(dpgBF2)2 (dpg =
diphenylglyoxime); Figure 7a illustrates the bound complex, with
the acetonitrile ligand indicated in magenta. Dissociation of the
axial acetonitrile ligand is thought to accompany catalyst
reduction in some systems, playing an important part in the
energetics of different reaction pathways.74

Figure 7b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,
DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
The atoms in subsystem A are included according to their
proximity to the Cometal center, with the requirement that these
atoms be contiguous via chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is 20.3 kcal/mol, and it is clear from Figure 7b that

Figure 7. (a) Illustration of the binding reaction between acetonitrile (magenta) and Co catalyst complex (geometries from ref 71). For the choice of
subsystem Awith 21 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF) KS-DFT reaction energy of 20.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is 6.7 kcal/mol.

Figure 8. (a) Illustration of binding reaction between CO (magenta) and hememodel complex (geometries from ref 75). For the choice of subsystem A
with 3 atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-level (PBE/
Def2-SVP/DF) KS-DFT reaction energy of 4.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −8.5 kcal/mol.
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the various basis set and exchange-correlation functional
approximations associated with the low-level KS-DFT lead to
errors (−14 to 37 kcal/mol) that exceed the magnitude of the
total binding energy. Nonetheless, EMFT leads to the systematic
reduction of these errors with the increasing size of subsystem A,
such that inclusion of only 21 atoms in subsystem A (illustrated
in Figure 7a) leads to errors of less than 5 kcal/mol. As for the
benchmark systems, it is clear from Figure 7b that the use of
mixed atomic orbital basis sets leads to the largest source of error
in the EMFT results.
CO Binding in an Iron−Porphyrin Complex. Heme

binding of small molecules, such as CO, NO, and O2, is a critical
step in many bioinorganic processes.76,77 Theoretical ap-
proaches, including KS-DFT, have focused on clarifying the
mechanism of these reactions, generally by using smaller model
complexes for reasons of computational feasibility.78,79 Work
using KS-DFT has also focused on benchmarking the accuracy of
different functionals, the choice of which substantially affects
computed results.75 Here, we consider the binding energy
between CO and a ferrous deoxy-heme model complex (deoxy-
FeP(Im)) in the singlet spin state. Figure 8a illustrates the bound
complex, with the CO ligand indicated using magenta and the O
atom bonding with Fe.
Figure 8b presents EMFT (PBE:LDA, Def2-SVP:STO-3G,

DF:DF(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The convergence of error in the ligand
binding energy is plotted with respect to the size of subsystem A.
As for the previous example, the atoms in subsystem A are
included according to their proximity to the transition metal
center, with the requirement that these atoms be contiguous via
chemical bonds.
The binding energy for this reaction obtained using the high-

level KS-DFT is only 4.5 kcal/mol, but it is clear from Figure 8b
that the various basis set and exchange-correlation functional
approximations associated with the low-level KS-DFT lead to
errors (−13 to 8 kcal/mol) that greatly exceed the magnitude of
the total binding energy. EMFT again leads to the systematic
reduction of these errors with the increasing size of subsystem A,
such that inclusion of only three atoms in subsystem A
(illustrated in Figure 8a) leads to errors of only 2 kcal/mol and
larger subsystem sizes lead to even smaller errors.
N2 Binding in a Cubane-Type RuIr3S4 Cluster. As a final

inorganic example, we consider the binding of molecular

nitrogen to a mixed-metal Ru/Ir sulfido cluster, [(Cp∗Ir)3Ru-
(tmeda)(μ3-S)4], (tmeda = Me2NCH2NMe2). Figure 9a
illustrates the bound complex, with the N2 ligand indicated
using magenta. Molecular models of this type have been
developed as functional analogues for the nitrogenase enzyme.81

In particular, the mixed-metal Ru/Ir sulfido cluster studied here
has been shown to effectively bind N2 and to exhibit substantial
weakening of the NN bond in the bound complex.82 Previous
KS-DFT studies have been employed to understand the
energetics and structural features of the N2 binding event.

80

Figure 9b presents EMFT (PBE:LDA, Def2-SVP:LANL2DZ,
DF2:DF2(s)) results for the embedding of high-level KS-DFT in
low-level KS-DFT. The Def2-SVP basis set includes effective
core potentials (ECPs) for the Ir and Ru atoms,83 and the
LAN2LDZ basis set includes ECPs for the Ir Ru, and S
atoms.84−87

The convergence of error in the ligand binding energy is
plotted with respect to the size of subsystem A. In this
application, we determine the atoms in subsystem A using a
simple radial distance cutoffmeasured from the binding nitrogen
atom, regardless of whether this partitioning disrupts contiguous
chemical bonds within the subsystems.
The binding energy for this reaction obtained using the high-

level KS-DFT is 35.5 kcal/mol, and it is clear from Figure 9b that
the various basis set and exchange-correlation functional
approximations associated with the low-level KS-DFT lead to
errors (ranging from roughly −10 to 16 kcal/mol) that are large
in comparison to the magnitude of the total binding energy.
EMFT again leads to the systematic reduction of these errors
with the increasing size of subsystem A, such that inclusion of
only six atoms in subsystem A (illustrated in Figure 9a) leads to a
result that is within 12% of the high-level KS-DFT result for the
binding energy. This result is particularly notable, given the
complex electronic structure of the metal−sulfur cluster and
given the fact that the subsystem partitioning was naively
performed according to a simple distance cutoff. Further
increasing the size of subsystem A in EMFT leads to the
systematic further decrease of the error in the binding energy.

■ STONE−WALES DEFECTS IN GRAPHENE

The formation and propagation of Stone−Wales defects impact
the mechanical, chemical, and physical properties of nano-
structured carbon materials, such as graphene, fullerenes, and

Figure 9. (a) Illustration of the binding reaction between N2 (magenta) and RuIr3S4 cubane-type complex (geometries from ref 80). For the choice of
subsystem Awith six atoms, the atoms associated with subsystem B are shown as translucent. (b) EMFT embedding errors, reported relative to the high-
level (PBE/Def2-SVP/DF2) KS-DFT reaction energy of 35.5 kcal/mol; the low-level (LDA/LANL2DZ/DF2(s)) KS-DFT reaction energy is 42.1
kcal/mol.
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carbon nanotubes.88 Because of their tendency to enhance
chemical reactivity,89,90 such defects may be functionalized to
tune nanotube reactivities and solubilities or to separate out

defective nanotubes.91 Although numerous electronic structure
studies have been performed,89−102 the investigation of Stone−
Wales defects is hindered by the large system-sizes of realistic
nanostructured carbon materials and the low number-density of
the defects.94 EMFT is potentially well-suited to the study of
such systems, which we demonstrate via applications to a range
of representative Stone−Wales defect processes.
All geometries in the following section are optimized using

Gaussian 0960 at the B3LYP/6-31G* level of theory, unless
otherwise noted. As before, the ONIOM calculations involve
termination of subsystem A using H atoms that are positioned
according to the default parametrization scheme in Gaussian
09;59,60 all ONIOM calculations in this section treat subsystem A
as a singlet spin state.

Defect Formation in a Small Graphene Sheet C16H10.
We first investigate the energetics of Stone−Wales defect
formation in C16H10. Figure 10 presents the reactant, transition
structure, and product associated with the defect formation.
Table 1 presents results for the activation and reaction energies,
obtained using KS-DFT, EMFT (B3LYP:LDA, 6-31G*:STO-
3G, DF:DF(s)), and ONIOM (B3LYP:LDA, 6-31G*:STO-3G)
calculations. The atoms associated with subsystem A in the
EMFT and the ONIOM calculations are indicated in Figure 10.
As seen in Table 1, the low-level (LDA/STO-3G) KS-DFT

differs significantly with respect to the high-level (B3LYP/6-
31G*) KS-DFT for the description of defect formation,
introducing errors of 53 and 8 kcal/mol for the activation and
reaction energies, respectively. ONIOM improves the descrip-

Figure 10. Reactant, transition structure, and product for Stone−Wales
defect formation in C16H10. The dashed line indicates the atoms in
subsystem A for the EMFT and ONIOM calculations.

Table 1. Activation and Reaction Energies for Stone−wales
Defect Formation in C16H10

a

method activation energy reaction energy

KS-DFT (B3LYP/6-31G*) 196.27 50.16
KS-DFT (LDA/STO-3G) 249.43 (53.16) 57.72 (7.56)
ONIOM (B3LYP:LDA,
6-31G*:STO-3G)

185.38 (−10.89) 56.27 (6.11)

EMFT (B3LYP:LDA,
6-31G*:STO-3G, DF:DF(s))

188.93 (−7.35) 49.67 (−0.49)

aEnergies are reported in kcal/mol. Results in parentheses indicate the
error relative to KS-DFT at the B3LYP/6-31G* level. KS-DFT are
calculations performed using Gaussian 09.60

Figure 11. (a) Reactant, transition structure, and product of Stone−Wales defect formation in C42H16. (b) For the reaction energy, EMFT andONIOM
embedding errors are reported relative to the high-level (B3LYP/6-31G*) KS-DFT result of 72.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-
DFT result is 77.9 kcal/mol. (c) For the activation energy, EMFT and ONIOM embedding errors are reported relative to the high-level (B3LYP/6-
31G*) KS-DFT result of 215.3 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT result is 242.5 kcal/mol.
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tion of the transition process (reducing the error to with 11 kcal/
mol), but it provides very little improvement in the reaction
energy. It is clear that EMFT performs significantly better for this
case, further reducing the error in the activation energy to
approximately 7 kcal/mol (less than 4% of the total activation
energy) and almost completely removing any error in the
reaction energy. As observed earlier for the benchmark example
of pentacene hydrogenation (Figure 3), EMFT is more accurate
than ONIOM and provides greater simplicity by avoiding the
need to specify the spin-state of the embedded subsystem.
Defect Formation in a Larger Graphene Sheet (C42H16).

We next examine the formation of Stone−Wales defects in a
larger graphene sheet (Figure 11a), computing the activation and
reaction energies using KS-DFT and the embedding methods
with two different sizes of subsystem A. As for the smaller
graphene sheet, the low-level (LDA/STO-3G/DF(s)) KS-DFT
differs significantly with respect to the high-level (B3LYP/6-
31G*) KS-DFT for the description of defect formation,
introducing errors of 5.6 and 27 kcal/mol for the reaction and
activation energies, respectively.
As seen in Figure 11b and Figure 11c, EMFT provides a

smaller error for the reaction and activation energies than
ONIOM for the size of subsystem A. The distinction between
methods is most pronounced for the smaller choice of subsystem
A that includes only six atoms (indicated in red in Figure 11a).
Even for this smaller subsystem, EMFT provides a reaction
energy that is within 2 kcal/mol of the high-level KS-DFT result
and an activation energy that is within 4 kcal/mol; for both of
these quantities, ONIOM exhibits errors that are more than
twice as large.

Cycloaddition of Azomethine-ylide to a Stone−Wales
Defective Carbon Nanotube. In a final example, we consider
the cycloaddition of azomethine-ylide at a Stone−Wales defect in
a single-walled carbon nanotube (C150H20); Figure 12 panels a
and b illustrate the reactant and product species, respectively.
Previous studies have identified that the reaction proceeds most
favorably at the five-member rings, as is highlighted in Figure
12(c).91 Using both EMFT (B3LYP:LDA, 6-31G*:STO-3G,
DF:DF(s)) and ONIOM (B3LYP:LDA, 6-31G*:STO-3G), we
compute the reaction energy for the cycloaddition reaction as a
function of the size of subsystem A. Geometries for this system
were obtained from ref 91 and reoptimized at the same level of
theory, ONIOM (B3LYP:LDA, 6-31G*:STO-3G) with sub-
system A comprising the 42-carbon region shown in Figure 12c.
For this reaction, the low-level (LDA/STO-3G/DF(s)) KS-

DFT predicts a reaction energy of −122.3 kcal/mol, which is
over twice that obtained using the high-level (B3LYP/6-31G*)
KS-DFT. Both EMFT and ONIOM significantly reduce this
massive error (Figure 12d), although it is seen that EMFT is
consistently more accurate, particularly for small sizes of
subsystem A. Even for choices of subsystem A that include
only two or four atoms from the nanotube in subsystem A,
EMFT provides reaction energies that are within 10% of the
high-level KS-DFT result; the ONIOM results for these
subsystems exhibit errors that are at least twice as large. For
larger subsystem sizes, the EMFT and ONIOM results are more
similar.

Figure 12. (a) Reactants and (b) product of the 1,3-dipolar cycloaddition of azomethine-ylide to a Stone−Wales defective carbon nanotube. (c)
Illustration of the different choices for subsystem A that are considered. (d) EMFT and ONIOM embedding errors, reported relative to the high-level
(B3LYP/6-31G*) KS-DFT reaction energy of −49.5 kcal/mol; the low-level (LDA/STO-3G/DF(s)) KS-DFT reaction energy is −122.3 kcal/mol.
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■ CONCLUSIONS
In this paper we have introduced embedded mean-field theory
(EMFT), a subsystem embedding approach that seamlessly
combines different mean-field levels of theory for different
subsystems into a mean-field description of the entire system.
The theory is notable for its simplicity, with respect to the

calculation of energies, gradients, and other response properties.
EMFT is also simple in terms of practical implementation,
requiring only the convenient specification of subsystem
partitioning at the level of the atomic-orbital basis and
completely avoiding the use of link atoms, link orbitals, or any
geometry-dependent parameters. Furthermore, EMFT avoids
the need to specify the number of electron with each subsystem,
thus allowing for the self-consistent flow of electron density
between subsystems, as well as fluctuations in the number of
elections per subsystem. These features distinguish EMFT from
other embedding schemes in which a separate calculation is
performed on subsystem A, and we illustrate that particle-
number fluctuations and entanglement at the mean-field level are
a natural and important feature of describing conjugated systems.
We further demonstrate that EMFT is accurate across a diverse

range of benchmark systems and more complex applications,
including cases for which subsystem partitioning involves
dividing across conjugated systems (such as graphene-like
systems) or in transition metal complexes. In particular, we
show that EMFT consistently performs well in comparison to
ONIOM for both energies and optimized geometries, while
avoiding the need to specify subsystem spin states or to introduce
(and parametrize the position of) atoms that chemically
terminate the subsystems.
Although we have only presented numerical results for one

variant of EMFT, in which both subsystems are treated using KS-
DFT, it is clear that alternative mean-field implementations will
be worth exploring in the future. Nonetheless, the accuracy of the
results presented here, as well as the fact that EMFT does not
necessitate different partitioning choices at different geometries,
suggests that the method is well-suited to the simulation of
chemical dynamics.
The development of tools to enable dynamics simulations in

complex systems that provide high-level KS-DFT accuracy for a
small fraction of the cost is very much of interest, and we are
enthusiastic about EMFT as a framework for pursuing this aim.
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