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Abstract. We present two insights into certain optimal transportation problems
that are accompanied by new approaches to the numerical solution of these problems.

First, we show that Monge’s optimal transport problem with quadratic cost can
be reformulated as an infinite-dimensional convex optimization problem under cer-
tain conditions, most importantly that the target measure has a log-concave density.
We define a natural discretization of the problem that can be solved by standard
convex optimization methods. We show that under suitable regularity conditions the
solutions of these discretized problems converges to the true solution of the optimal
transport problem as the discretization becomes increasingly fine.

Second, we exhibit an approach to the numerical solution of optimal transport
problems with quadratic cost, essentially only involving the repeated solution of
second-order linear elliptic partial differential equations.

We use both methods to numerically compute and obtain visualizations of optimal
transport maps. In order to keep this work relatively self-contained, we provide as
much as possible of the relevant background of optimal transport and convex analysis.

Contents

Introduction 2

Part 1. Background on optimal transport 3
1. The Kantorovich problem 3
2. The Monge problem 4
3. The discrete problem 5
4. The stability of optimal transport 7
5. Naive method for numerical optimal transport 8
6. Convex analysis and optimal transport with the quadratic cost 9
7. The discontinuity of optimal maps 11
8. The Monge-Ampère equation and regularity 11

Part 2. The Monge-Ampère optimization problem 13
9. Overview 13
9.1. A reformulation of Monge’s problem 13
9.2. The discrete Monge–Ampère optimization problem 14
10. The continuous setting 15
11. Discretizing the Monge–Ampère optimization problem 17
12. Convergence of solutions of the DMAOP 17
12.1. The objective function 18

1



2 MICHAEL LINDSEY

12.2. A piecewise affine approximate Brenier potential 22
12.3. First order behavior of the barycenteric extension of the gradient of the

approximate Brenier potentials 22
12.4. Second order control 23
12.5. Obtaining a density inequality 25
12.6. Passing to the limit in k 26
12.7. Passing to the limit in ε 28
12.8. Concluding the proof via the stability of optimal transport 33
13. Relationship of the DMAOP with discrete optimal transport 35
14. Numerical experiments 35
14.1. Implementation details 35
14.2. Examples 35

Part 3. Numerical optimal transport via linear elliptic PDE 38
15. Derivation of the numerical method 39
15.1. Deriving a PDE for the time derivative of the convex potential 39
15.2. Discussion and a preview of our numerical approach 40
15.3. Deriving the boundary conditions 41
16. Details of the numerical scheme 42
17. An account of theoretical debts and a program for their fulfillment 45
18. Numerical experiments 45

Acknowledgments 47

Appendices: Definitions and results from convex analysis 48
Appendix A. Convex sets and functions 48
Appendix B. First-order properties of convex functions 49
Appendix C. Convergence of subgradients 51
Appendix D. The convex conjugate 52

References 52

Introduction

Optimal transport is a rich field with diverse applications both within and outside
of mathematics. The motivating question of optimal transport is the following: how
does one move an arrangement of mass to a specified position in a way that minimizes
some cost associated with transportation? The solutions to such problems, however,
are rarely expressible in closed form, and hence numerical methods for solving optimal
transport problems are crucial in applications. For a thorough survey of existing nu-
merical methods we refer the interested reader to the article of Feng–Glowinski–Neilan
[15] and the references therein.

In this work we exhibit two novel methods for solving certain optimal transport
problems. The first method is accompanied by a proof of accuracy under certain
conditions. This proof is surprisingly technical, and a large part of this work is devoted
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to it. Our second method is justified more heuristically, though it is computationally
faster and has empirically proven capable of handling more difficult problems than the
first method.

Before discussing these methods, we begin with a review of optimal transport.

Part 1. Background on optimal transport

The theory of optimal transport can be motivated quite concretely. We will give
two informal examples of optimal transport problems before defining such problems in
generality.

First, suppose that we are given a pile of sand (the shape of which is arbitrary) and
a hole of equal volume (also of arbitrary shape) as well as a function c(x, y) specifying
the cost of moving mass from point x to point y. How do we move all of the sand into
the hole in a way that minimizes the total transportation cost?

Second, suppose that there are N bakeries that together supply a total of B baked
goods as well as M restaurants that together have a total demand for B baked goods.
Further suppose that there is a cost cij associated with transporting a single baked good
from the i-th bakery to the j-th restaurant. How do we move all of the baked goods
from bakeries to restaurants in a way that minimizes the total transportation cost?
(For now, we allow for the transportation of non-integer numbers of baked goods.)

1. The Kantorovich problem

Let us now formulate a more general optimal transport problem. We will roughly
follow Villani [36] in the following. Since this material will serve as background for the
thesis, we shall attempt to avoid excessive formality.

Let X and Y be measure spaces (which we shall call the source and target, respec-
tively), and let µ and ν be probability measures on X and Y , respectively. We want to
define an object that fully describes a plan for transporting the mass of µ to ν. This
object will be a probability measure π on the product space X×Y . Roughly speaking,
we want dπ(x, y) to specify the amount of mass moved from x ∈ X to y ∈ Y . Then
(again roughly) it must hold that dµ(x) =

∫
Y dπ(x, y) and dν(y) =

∫
X dπ(x, y), i.e.,

that the total amount of mass transported from x coincide with dµ(x) and that the
total amount of mass transported to y coincide with dν(y). This intuition leads us to
the following constraint on π: we must have

π(A× Y ) = µ(A)

for all measurable A ⊂ X and

π(X ×B) = ν(B)

for all measurable B ⊂ Y (so π has marginals µ and ν). A probability measure π on
X × Y satsifying this constraint will be called a transference plan.

Now let Π(µ, ν) be the set of transference plans associated with µ and ν, and let c
(the cost function) be a measurable map X × Y → R ∪ {+∞} with c ≥ 0. Then the
Kantorovich optimal transport problem is the following:

minimize

∫
X×Y

c(x, y) dπ(x, y), subject to π ∈ Π(µ, ν).
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We are interested in both the minimal cost (the optimal transport cost) and the trans-
ference plans π that attain the minimal cost (the optimal transference plans, which
may not exist). Notice that it is possible (a priori) that an optimal transference plan
‘splits mass.’ It makes sense to allow for this possibility; indeed, consider the second
example problem above (i.e., the bakery-restaurant problem) in the case that N < M .
It must be the case that, in any transference plan π, at least one of the bakeries send
baked goods to at least two restaurants.

2. The Monge problem

Nonetheless, it is natural to pay special attention to transference plans that do not
split mass. Suppose that π does not split mass, i.e., that for any x ∈ X, dπ(x, y) =
dµ(x) δ[y = T (x)], where T is a function X → Y . In order to proceed, we must
additionally assume that T is measurable. Then for any measurable non-negative
measurable function ζ : X × Y → R, we have that∫

X×Y
ζ(x, y) dπ(x, y) =

∫
X
ζ(x, T (x)) dµ(x).

In particular, ζ may be characteristic functions of measurable subsets of X×Y . There-
fore, given a measurable map T : X → Y , the preceding equation defines a probability
measure πT on X × Y . More precisely, we define πT by

πT (C) =

∫
X
χC(x, T (x)) dµ(x)

for measurable C ⊂ X×Y . We want to know when T yields πT ∈ Π(µ, ν). Notice that

πT (A× Y ) =

∫
X
χA×Y (x, T (x)) dµ(x) = µ(A)

for measurable A ⊂ X and

πT (X ×B) =

∫
X
χX×B(x, T (x)) dµ(x) = µ

(
T−1(B)

)
for measurable B ⊂ Y , so in order to have πT ∈ Π(µ, ν) we only require that ν(B) =
µ
(
T−1(B)

)
for all measurable B ⊂ Y . This means precisely that ν is the push-forward

measure of µ by T , written ν = T#µ.
Now we can formulate the Monge optimal transport problem:

minimize

∫
X
c(x, T (x)) dµ(x)

subject to T measurable, T#µ = ν.

It is clear that Kantorovich’s problem is a relaxation of Monge’s problem (though
Monge’s problem preceded Kantorovich’s historically). The Kantorovich problem is, in
several senses, easier to handle theoretically than the Monge problem. In particular,
note that for any µ and ν, while there always exists a transference plan π, there does
not always exist T such that T#µ = ν. To see the first point, simply note that we
can take dπ(x, y) = dµ(x) dν(y). For the second point, consider the case in which µ is
a Dirac mass and ν is the combination of two Dirac masses supported at different points.
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It is natural to ask when the solutions of the Monge and Kantorovich problems exist
and are unique, as well as when the solutions of the two problems coincide (i.e., when
T and πT solve the Monge and Kantorovich problems, respectively). When the two
problems can be solved jointly, we will refer to the two problems together as the Monge-
Kantorovich problem. This thesis will focus on the setting in which X = Y = Rn, µ and
ν are absolutely continuous with respect to the Lebesgue measure, and c(x, y) = |x−y|2.
(We shall refer to this cost as the ‘quadratic cost.’) It happens that in this setting, the
Monge and Kantorovich problems admit unique solutions, and their solutions coincide.
We will review the results that guarantee this.

It might interest the reader that Gaspard Monge (1746-1818), the originator of the
Monge problem, actually focused on the cost function c(x, y) = |x−y| on Rn×Rn. This
case happens to be much trickier to deal with than the case c(x, y) = |x − y|p, where
p > 1. In particular, uniqueness results are less readily available. We can illustrate this
point with a simple example. Consider the ‘bookcase problem,’ in which X = {−1, 0},
Y = {0, 1}, 2µ = δ−1 + δ0, 2ν = δ0 + δ1, and c(x, y) = |x − y|p. Then evidently
the map T1 : X → Y defined by T1(−1) = 0 and T1(0) = 1 and the map T2 defined
by T2(−1) = 1 and T2(0) = 0 both solve the Monge and Kantorovich problems when
p = 1. However, when p > 1, it is clear that T1 is the unique solution of both problems.

3. The discrete problem

Let X = {x1, . . . , xN} and Y = {y1, . . . , yM}, and let

µ =
N∑
i=1

aiδxi , ν =
N∑
j=1

bjδyj ,

be probability measures (so ai, bj ≥ 0 with
∑

i ai = 1 and
∑

j bj = 1). Let c(xi, yj) =
cij ≥ 0.

Notice that for π a probability measure on X × Y , we have that π is completely
determined by the πij := π({xi}, {yj}), the amount of mass transported from xi to
yj . The constraint that π be a transference plan can be expressed by the equations
ai =

∑
j πij , bj =

∑
i πij .

Then the Kantorovich problem is actually a linear program in this case:

minimize
N∑
i=1

πijcij

subject to

N∑
j=1

πij = ai (j = 1, . . . , N)

N∑
i=1

πij = bj (i = 1, . . . , N)

πij ≥ 0 (i, j = 1, . . . , N).
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Indeed, the general Kantorovich problem can be thought of as an infinite-dimensional
linear program, and an extension of the duality theory from finite-dimensional linear
programs is of great use in the theory of optimal transport.

Let us further narrow our attention to the case in which N = M and ai = bi = 1
N

for all i = 1, . . . , N . It is convenient to consider the linear program

minimize

N∑
i=1

πijcij

subject to
N∑
j=1

πij = 1 (j = 1, . . . , N)

N∑
i=1

πij = 1 (i = 1, . . . , N)

πij ≥ 0 (i, j = 1, . . . , N).

If
(
π∗ij

)
solves this linear program, then 1

N

(
π∗ij

)
solves the Kantorovich problem (and

the reverse implication is also true). Notice that the constraints on π are precisely the
constraints that define the set of bistochastic matrices (i.e., one could take this as the
definition of the bistochastic matrices). Let Bn denote the set of bistochastic matrices.
Then it is immediate that Bn is compact and convex, and furthermore we have the
following.

Theorem 1. (Birkhoff.) The n × n permutation matrices are the extremal points of
Bn.

The proof is not hard, but including it would make for excessive digression. The
steps are outlined in Villani [36].

Since
∑N

i=1 πijcij is affine in the πij , by Choquet’s theorem this expression attains its
minimum at an extremal point of Bn. (We can expect that ‘generically’ this minimizer

is unique.) Thus there exists a permutation matrix
(
π∗ij

)
such that 1

N

(
π∗ij

)
solves the

Kantorovich problem. Evidently, the bijection T ∗ : {1, . . . , N} → {1, . . . , N} associated

to the permutation
(
π∗ij

)
then solves the Monge problem.

The problem of finding a bijection T : {1, . . . , N} → {1, . . . , N} that minimizes∑N
i=1 ci,T (i) is called the assignment problem. Though this is a combinatorial problem,

the preceding discussion indicates that the assignment problem can solved by consider-
ing its relaxation to the above linear program. Somewhat surprisingly, there do in fact
exist combinatorial methods for solving the assignment problem that are faster than
solving the corresponding linear program. The Jonker-Volgenant algorithm (see [20]),
for example, runs with worst-case complexity O(N3), which is perhaps surprisingly
fast given the combinatorial nature of the problem, though still, practically speaking,
not particularly fast. The convenience of solving the assignment problem using this
algorithm on a standard computer wanes as N climbs past 1000.
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4. The stability of optimal transport

It is very natural to hope that if we change µ or ν slightly, then (roughly speaking)
the optimal transference plan π and optimal map T (if they exist) do not change too
much. Such stability does indeed hold in a useful sense.

Theorem 2. (Stability of optimal transport I.) Let X and Y be open subsets of Rn,
and let c : X × Y → R be a continuous cost function with inf c > −∞. Let µk and νk
be sequences of probability measures on X and Y , respectively, such that µk converges
weakly to µ and νk converges weakly to ν. For each k, let πk be an optimal transference
plan between µk and νk. Lastly assume that∫

c dπk < +∞ for all k, lim inf
k

∫
c dπk < +∞.

Then a subsequence of πk converges weakly to an optimal transference plan (solving the
Kantorovich problem).

Proof. See Theorem 5.20 of Villani [37]. We have stated the theorem here in signifi-
cantly less generality. �

We also have a notion of stability for the optimal transport maps that solve the
Monge problem.

Corollary 3. (Stability of optimal transport II.) With the same hypotheses as in The-
orem 2, further suppose that there exist measurable maps Tk, T : X → Y such that
πk = (Id, Tk)# µk and π = (Id, T )# µ is the unique solution to the Kantorovich prob-
lem. Moreover, assume that there exists a constant C > 0 such that µk ≤ Cµ for all
k.

Then for all ε > 0, we have that

lim
k→∞

µk [{x ∈ X : |Tk(x)− T (x)| > ε}] = 0.

In particular, if µk = µ for al k, then Tk converges to T in µ-probability.

Proof. We are inspired by the proof of Corollary 5.23 of Villani [37], but we make
signficant modifications. As was the case for Theorem 2, more general results are
available.

First note that by Theorem 2 and the uniqueness of π, we have that πk → π weakly.
Now let ε > 0 and δ > 0. By Lusin’s theorem, there exists a compact set K ⊂ X with

µ(X\K) < C−1δ (so µk(X\K) < δ) such that the restriction of T to K is continuous.
Then let

Aε = {(x, y) ∈ K × Y : |T (x)− y| ≥ ε} .
By the continuity of T on K, Aε is closed in K × Y , hence also in X × Y . Since
π = (Id, T )# µ, meaning in particular that π is concentrated on the graph of T , we

have that π(Aε) = 0. Then by weak convergence and the fact that Aε is closed, we
have that

0 = π(Aε) ≥ lim sup
k→∞

πk(Aε)

= lim sup
k→∞

πk ({(x, y) ∈ K × Y : |T (x)− y| ≥ ε})
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= lim sup
k→∞

µk ({x ∈ K : |T (x)− Tk(x)| ≥ ε})

≥ lim sup
k→∞

µk ({x ∈ X : |T (x)− Tk(x)| ≥ ε})− µk(X\K)

≥ lim sup
k→∞

µk ({x ∈ X : |T (x)− Tk(x)| ≥ ε})− δ,

and the desired result follows. �

Remark 4. The reader can verify by examining the proof that if we remove the as-
sumption of the existence of a constant C > 0 with µk ≤ Cµ and replace it with the
assumption that T is continuous, then the same conclusion holds.

5. Naive method for numerical optimal transport

Our discussion of the discrete problem, together with the stability results just pre-
sented, suggest an approach for computing optimal maps numerically. First, take a

sequence of discrete measures µk =
∑Nk

i=1 aikδxik and νk =
∑Mk

j=1 bjkδyjk converging
weakly to µ and ν, respectively. Then compute an optimal transference plan πk by
linear programming, or, in the case that Nk = Mk and aik = bjk = 1

Nk
, by solving the

corresponding assignment problem. In the first case, we get that a subsequence of πk
converges to a solution of the Kantorovich problem associated with µ and ν.

In the second case, as long as we know that there exists a unique continuous solution
T to the Monge-Kantorovich problem, then by the second stability result (Corollary 3)
we have that Tk converges to T in the following sense: for any ε > 0, the percentage of
the xik at which the error |Tk − T | exceeds ε tends to zero as k →∞.

The generality of the setting in which this result holds is noteworthy. Indeed, we have
assumed little about the cost function c. Also, by using generalizations of the above
stability results, we may even work in non-euclidean settings. However, in exchange
for the generality of our assumptions, we have received a guarantee of convergence in
a fairly weak sense.

This approach is, in addition, quite computationally expensive because the assign-
ment problem does not scale particularly well. Furthermore, it is somewhat difficult
to choose discrete µk and νk that approximate µ and ν, and if the density of µ (or ν)
varies considerably, then many points will be needed to do so.

There is another drawback which is more subtle. Suppose for simplicity that µ and
ν are measures with uniform density on their respective supports and that T solves the
corresponding Monge problem. Suppose that we choose µk and νk so that, for each
k, the Dirac masses at xik and yjk comprising these discrete measures are distributed
‘isotropically’ throughout suppµ and supp ν, respectively, in some sense. Now it very
well could be the case (and in fact usually is the case) that for fixed k the T (xik) are
not distributed isotropically throughout supp ν. (T may distort volume differently in
different directions.) But in fixing the positions yjk beforehand we demand that for
each k the images Tk(xik) are distributed isotropically. Notionally we then understand
that solving the assignment problem does a poor job of pinning down the first-order
properties of T (i.e., its Jacobian). In order to have any hope of pinning down these
properties at some length scale R, we have to take Nk large enough such that many
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points lie within any ball of radius R and then somehow smooth Tk using a mollifier
supported on the ball of radius R about the origin. This requires Nk to be quite large
for a good approximation.

Moreover, in the case in which the cost function has some structure, it is intuitively
clear that this method is ‘throwing away information’ as methods for solving the as-
signment problem work for an arbitrary cost matrix (cij). Thus there is hope that
approaches more customized to the specific optimal transport problem at hand will
yield better results.

6. Convex analysis and optimal transport with the quadratic cost

In this subsection, we indicate the connection between convex analysis and optimal
transport with the quadratic cost. We direct the reader to the appendix for useful
definitions and facts from convex analysis. We begin with a definition.

Definition 5. We say that a subset Γ ⊂ Rn × Rn is cyclically monotone if for all
m ≥ 1 and all (x1, y1), . . . , (xm, ym) ∈ Γ, we have

m∑
i=1

|xi − yi|2 ≤
m∑
i=1

|xi − yi−1|2

(where we understand y0 = ym), or equivalently
m∑
i=1

〈yi, xi+1 − xi〉 ≤ 0

(where we understand xm+1 = x1).

In the context of optimal transport, we understand each point (x, y) ∈ Γ to be a
pairing of a source point and a target point. There is a cost |x− y|2 associated to this
pairing. Intuitively speaking, cyclical monotonicity means that we cannot decrease the
total cost of a finite number of pairings in Γ by permuting the target points of these
pairings. With this in mind, the following result should not be too surprising.

Theorem 6. Let µ and ν be probability measures on Rn, and let π ∈ Π(µ, ν) solve the
associated Kantorovich problem with quadratic cost c(x, y) = |x−y|2. Then the support
of π is cyclically monotone.

Proof. For a sketch, see Proposition 2.24 of Villani [36]. �

With the connection between optimal transport and cyclical monotonicity estab-
lished, we see that understanding cyclically monotone sets will be of great service in
characterizing optimal maps. The following theorem is crucial to this endeavor.

Theorem 7. (Rockafellar.) A nonempty subset Γ ⊂ Rn × Rn is cyclically monotone
if and only if it is included in Graph (∂ϕ) for a proper lower semi-continuous convex
function ϕ on Rn.

Proof. (Following the proof of Theorem 2.27 of Villani [36]) Suppose that ϕ is a proper
lower-semicontinuous convex function. Clearly any subset of a cyclically monotone set
is cyclically monotone, so for the ‘if’ direction it suffices to show that the subdifferential
of ϕ is cyclically monotone.
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Let (x1, y1), . . . , (xm, ym) ∈ Graph (∂ϕ), so for all z ∈ Rn, we have that ϕ(z) ≥
ϕ(xi) + 〈yi, z − xi〉. Thus we have that

ϕ(x2) ≥ ϕ(x1) + 〈y1, x2 − x1〉
ϕ(x3) ≥ ϕ(x2) + 〈y2, x3 − x2〉

...

ϕ(x1) ≥ ϕ(xm) + 〈ym, x1 − xm〉 .

Taking the sum of these equalities we obtain 0 ≥
∑

i 〈yi, xi+1 − xi〉, giving cyclical
monotonicity by definition.

Conversely, let Γ ⊂ Rn × Rn be cyclically monotone. Then let (x0, y0) ∈ Γ and set

ϕ(x) = sup {〈ym, x− xm〉+ · · ·+ 〈y0, x1 − x0〉 : m ∈ N, (xi, yi) ∈ Γ} .

Now ϕ is the pointwise supremum of affine functions (which are in particular convex),
so ϕ is lower semi-continuous and convex. (The reader may easily verify that the
pointwise supremum of convex functions is convex.) Then by cyclical monotonicity,
ϕ(x0) ≤ 0, so it follows that ϕ is proper.

It remains to show that Γ ⊂ Graph(∂ϕ), and for this it suffices to show that, given
(x, y) ∈ Γ, ϕ(z) ≥ ϕ(x) + 〈y, z − x〉 for all z ∈ Rn.

Let δ > 0. Then there exist (by the definition of ϕ) m and xi, yi such that

ϕ(x)− δ ≤ 〈ym, x− xm〉+ · · ·+ 〈y0, x1 − x0〉 .

It follows that

ϕ(x)− δ + 〈y, z − x〉 ≤ 〈y, z − x〉+ 〈ym, x− xm〉+ · · ·+ 〈y0, x1 − x0〉 .

Let xm+1 = x and ym+1 = y, and note that by applying the definition of ϕ to the RHS,
we obtain

ϕ(x)− δ + 〈y, z − x〉 ≤ ϕ(z).

Since δ > 0 was arbitrary, we in fact have ϕ(z) ≥ ϕ(x) + 〈y, z − x〉, as desired. �

Clearly from the preceding two results we have:

Theorem 8. Let µ and ν be probability measures on Rn, and let π ∈ Π(µ, ν) solve the
associated Kantorovich problem with quadratic cost c(x, y) = |x−y|2. Then the support
of π is contained in Graph(∂ϕ) for a proper lower-semicontinuous convex function ϕ.

The preceding was meant to provide some background for the following result, central
to this thesis, so that it does not come as a complete surprise. Still, the proof is quite
involved, and relating it here would take us too far afield.

Theorem 9. (Brenier.) Let µ and ν be probability measures on Rn with finite second-
order moments, i.e., satisfying∫

|x|2 dµ(x) +

∫
|y|2 dν(y) < +∞,

and suppose that µ is absolutely continuous with respect to the Lebesgue measure. Con-
sider the associated Monge and Kantorovich problems with quadratic cost c(x, y) =
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|x − y|2. There exists a unique transference plan π ∈ Π(µ, ν) that solves the Kan-
torovich problem, given by

dπ(x, y) = dµ(x) δ[y = ∇ϕ(x)],

or equivalently,

π = (Id×∇ϕ)# µ,

where ∇ϕ is the unique (i.e., uniquely determined dµ-almost everywhere) gradient of
a convex function ϕ (called the convex potential) satisfying ∇ϕ#µ = ν. Furthermore,

Supp(ν) = ∇ϕ (Supp(µ)). It follows that ∇ϕ is the unique solution to the Monge
problem.

If we further assume that ν is absolutely continuous with respect to the Lebesgue
measure, then ∇ϕ∗ ◦ ∇ϕ(x) = x for dµ-almost all x, and ∇ϕ ◦ ∇ϕ∗(y) = y for dν-
almost all y. Furthermore, ∇ϕ∗ is the unique gradient of a convex function that pushes
ν forward to µ as well as the solution of the Monge problem with quadratic cost and
source and target measures ν and µ, respectively.

Proof. SeeTheorem 2.12 of Villani [36]. �

7. The discontinuity of optimal maps

Though Brenier’s theorem is indeed a remarkable and useful result, it is still desirable
to know more about the regularity of solutions of optimal transport problems. Indeed,
under the conditions of Brenier’s theorem, it is not possible to guarantee that the
optimal map T = ∇ϕ is even continuous. Consider for example, a situation in which
the support of the source is a disc and the support of the target measure is the union
of two disjoint discs. It is clear in this case that T must be discontinuous.

To guarantee the continuity of T , it is actually not enough to take the support of
ν to be simply connected (and, in particular, connected). A counterexample due to
Caffarelli is the following. Let the support of µ be a disc, and let the density of µ be
uniform on its support. Let the support of ν consist of the union of two opposite-facing
half-discs, joined by a thin rectangular ‘bridge,’ and likewise let ν have uniform density
on its support. If we take the ‘bridge’ to be sufficiently thin, then the optimal map
T = ∇ϕ is discontinuous. This result is intuitive: as the width of the bridge tends
to zero, by the stability of optimal transport we expect that the optimal map will
approach (in some sense) the optimal map from the ball to the disjoint union of two
half-discs, which is discontinuous. (See Theorem 12.1 of Villani [37] for details.) In
fact, as we shall see, the ‘correct’ condition to place on the target measure is that its
support be convex.

One of the motivations for this research was to investigate discontinuities in optimal
maps. What do discontinuity sets look like, and how ‘large’ are discontinuities? Nu-
merical approximation of optimal maps will, among other things, allow us to examine
such discontinuities visually and gain intuition about their behavior.

8. The Monge-Ampère equation and regularity

The regularity theory of optimal transport is achieved through the analysis of a
nonlinear partial differential equation, called a Monge-Ampère equation. We outline the
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derivation of this equation and state the main result we need regarding the regularity
of its solutions.

Let dµ(x) = f(x) dx and dν(y) = g(y) dy be probability measures on Rn (absolutely
continuous with respect to the Lebesgue measure) with finite second-order moments.
By Brenier’s theorem, there exists a dµ-almost everywhere unique gradient of a convex
function ∇ϕ with ∇ϕ#µ = ν. Then for ζ continuous and bounded, we have that∫

ζ dν =

∫
ζ ◦ ∇ϕdµ,

i.e., ∫
ζ(y)g(y) dy =

∫
ζ (∇ϕ(x)) f(x) dx

Assume that ∇ϕ is C1 and that ϕ is strictly convex (i.e., ∇2ϕ is positive definite
everywhere). It follows easily that ∇ϕ is injective. Then by change of variables we
obtain ∫

ζ(y)g(y) dy =

∫
ζ (∇ϕ(x)) g (∇ϕ(x)) det

(
∇2ϕ(x)

)
dx,

so ∫
ζ (∇ϕ(x)) f(x) dx =

∫
ζ (∇ϕ(x)) g (∇ϕ(x)) det

(
∇2ϕ(x)

)
dx,

for all bounded continuous ζ. It follows that f(x) = g (∇ϕ(x)) det
(
∇2ϕ(x)

)
, or

det
(
∇2ϕ(x)

)
=

f(x)

g (∇ϕ(x))
.

This is an example of a Monge-Ampère equation, which are in general equations of the
form

det
(
∇2ϕ(x)

)
= F (x, ϕ(x),∇ϕ(x)).

Our Monge-Ampère equation can be understood as specifying that near a point x, ∇ϕ
distorts volume according to the ratio of the source density at x and the target density
at the image point ∇ϕ(x).

We now state the major regularity result for optimal transport in our setting of
interest.

Theorem 10. (Caffarelli’s regularity theory.) Let X and Y be bounded open subsets
of Rn. Let f ∈ C0,α(X) and g ∈ C0,α(Y ) be positive and bounded away from zero and
infinity with

∫
X f =

∫
Y g. Suppose that Y is convex, and let ϕ be the unique convex

potential furnished by Brenier’s theorem. Then in fact ϕ ∈ C2,α(X), and ϕ is a strong
solution of the Monge-Ampère equation

det∇2ϕ(x) =
f(x)

g (∇ϕ(x))
, x ∈ X.

If, in addition, X is convex, then we have that ϕ ∈ C1,α
(
X
)

and ϕ is strictly convex

on X.
If furthermore X and Y are both uniformly convex (i.e., defined by ψ < 0 for some ψ

with ∇2ψ � λIn for some λ > 0) and of class C2 and f ∈ C0,α
(
X
)

and g ∈ C0,α
(
Y
)
,

then ϕ ∈ C2,α
(
X
)
.
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Remark 11. This is a very difficult (and remarkable) theorem. See Chapter 4 of Villani
[36] for an introduction to the regularity theory of optimal transport and for further
references. For the statement of this theorem, we have combined statements from
Villani [36] and Caffarelli [10].

Part 2. The Monge-Ampère optimization problem

9. Overview

9.1. A reformulation of Monge’s problem. Let Ω and Λ be bounded open sets
in Rn with Λ convex, and let f and g be positive functions on Ω and Λ, respectively,
each bounded away from zero and infinity. For simplicity, assume that f and g are in
C0,α(Ω) and C0,α(Λ), respectively, and that they define probability measures µ and ν
on Ω and Λ, respectively, by

µ = f dx, ν = g dx,

where dx denotes the Lebesgue measure on Rn. Then by results of Brenier (Theorem
9) and Caffarelli (Theorem 10), there exists a unique solution of the corresponding
Monge problem with the quadratic cost, i.e.,

minimize
{T :Ω→Λ :T#µ=ν}

∫
Ω
|T (x)− x|2 dµ(x),

and, moreover, T is C1,α. Further, the solution is given by T = ∇ϕ, for ϕ convex and
C2,α. In addition, ϕ is the unique (up to an additive constant) strong solution of the
Monge–Ampère equation

(1)
det
(
∇2ϕ(x)

)
=

f(x)

g (∇ϕ(x))
, x ∈ Ω,

∇ϕ(Ω) ⊂ Λ.

The following result rephrases Monge’s problem as an infinite-dimensional optimiza-
tion problem. This problem can be considered ‘convex’ whenever the target measure
has log-concave (in particular, uniform) density with convex support. We refer to §10
for a proof, as well as more details and intuition on the aforementioned interpretation.

Proposition 12. With notation and hypotheses as in the above discussion, ϕ is the
unique solution of the following optimization problem:

minimize
ψ∈J

F(ψ) :=
∫

Ω G(ψ, x)dx,

where

J := {ψ ∈ C2(Ω) : ψ convex, and ∇ψ(Ω) ⊂ Λ},
and

G(ψ, x) := max
{

0,− log det
(
∇2ψ(x)

)
− log g (∇ψ(x)) + log f(x)

}
.

The previous result, while not difficult to prove, provides the key starting point for
our discretization method, that we now turn to discuss.
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9.2. The discrete Monge–Ampère optimization problem. Let x1, . . . , xN ∈ Ω,
and let T1, . . . , TM ⊂ Ω be (n-dimensional) simplices with vertices in {xi} that together
form an ‘almost-triangulation’ of Ω. By this we mean that the intersection of any two
of the Ti is either empty or a common face (of any dimension) and that Ω\

⋃M
i=1 Ti, has

small volume. Note that the triangulation can be made perfect if Ω is a polytope. We
denote the vertices of the simplex Ti by xi0 , . . . , xin , i0, . . . , in ∈ {1, . . . , N}.

Definition 13. The discrete Monge–Ampère optimization problem (DMAOP) is:

minimize
{ψi∈R,ηi∈Rn}Ni=1

max
i∈{1,...,M}

max

{
0,− log detH(i)

(
ηi0 , . . . , ηin

)
− log g

(
1

n+1

∑n
j=0ηij

)
+ log f

(
1

n+1

∑n
j=0 xij

)}
subject to ψj ≥ ψi + 〈ηi, xj − xi〉 , i, j = 1, . . . , N,

ηi ∈ Λ, i = 1, . . . , N,

Hi (ηi0 , . . . , ηin) � 0, i = 1, . . . ,M,

where the matrices Hi, Ai, and Bi are defined by

(2)

Ai :=
[

(xi1 − xi0) (xi2 − xi0) · · · (xin − xi0)
]T
,

Bi :=
[

(ηi1 − ηi0) (ηi2 − ηi0) · · · (ηin − ηi0)
]T
,

Hi ≡ Hi

(
ηi0 , . . . , ηin

)
:=

1

2
(Ai)

−1Bi +
1

2

(
(Ai)

−1Bi

)T
.

We will show later that the DMAOP defined above is feasible for a fine enough trian-
gulation, so standard results guarantee that the DMAOP always has a (not necessarily
unique) solution in the optimization variables ψ1, . . . , ψN and η1, . . . , ηN . These vari-
ables are the discrete analogues of the values of the convex potential and its gradient,
respectively, at the points xi. Observe that Hi is the discrete analogue of the Hessian
∇2ψ at simplex Ti and that Hi is linear in ηi0 , . . . , ηin . One can think of detHi as a
measure of the volume distortion of simplex Ti under the map ∇ψ.

Next we take a sequence of almost-triangulations indexed by k (so now both N and
M are functions of k, although we will usually omit that dependence from our notation)

and construct a piecewise linear convex function φ(k) associated with the solution of

the k-th DMAOP, {ψ(k)
j , η

(k)
j }Nj=1. Define

(3) G
(k)
j (x) := ψ

(k)
j + 〈η(k)

j , x− x(k)
j 〉, j = 1, . . . , N,

so G
(k)
j is the (unique) affine function with ∇G(k)

j (x
(k)
j ) = η

(k)
j and G

(k)
j (x

(k)
j ) = ψ

(k)
j ,

and define the approximate Brenier potential (a name that is justified by Theorem 14
below)

(4) φ(k)(x) := b(k) + max
j=1,...N

G
(k)
j (x),

where b(k) ∈ R is chosen such that φ(k)(0) = 0 (and we have assumed, without loss

of generality, that 0 ∈ Ω). Notice that we have actually defined φ(k) on all of Rn.
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Evidently φ(k) is convex, and by the constraints of the DMAOP, also

(5) φ(k)(x
(k)
j ) = ψ

(k)
j + b(k),

and

(6) η
(k)
j ∈ ∂φ(k)(x

(k)
j ).

Now we state our main theorem, which concerns the convergence of the approximate
Brenier potentials.

Theorem 14. Suppose that maxi diamT
(k)
i tends to zero as k → ∞ and that there

are open regions regions Ωε ⊂ Ω for ε > 0 such that: (i) for any ε > 0, we have
that an ε-neighborhood of Ωε is contained within the k-th almost-triangulation for all
k sufficiently large, (ii) Ωε ⊂ Ωε′ for ε′ ≤ ε, and (iii)

⋃
ε>0 Ωε = Ω. Furthermore,

suppose that the optimal cost of the k-th DMAOP tends to zero as k → ∞. Then
as k → ∞, the approximate Brenier potential φ(k) yielded by the solution of the k-th
DMAOP converges uniformly on Ω to the unique solution ϕ of (1) with ϕ(0) = 0.

The condition that the optimal cost of the k-th DMAOP tends to zero as k → ∞
holds in particular when we additionally assume that the sequence

{
T

(k)
i

}∞
k=0

of almost-

triangulations of Ω satisfies the determinant regularity property (see Definition 22 be-
low) and that the convex potential ϕ defined by (1) is in the class C2,α

(
Ω
)

for some
α > 0. (By Caffarelli’s regularity theory (see Theorem 10), we are guaranteed that
ϕ ∈ C2,α

(
Ω
)

when we additionally assume that Ω and Λ are uniformly convex and of

class C2.)

Remark 15. The conditions on the sequence of triangulations are necessary for technical
reasons, but they are fulfilled easily in practice.

Remark 16. We see from the statement of the theorem that even in situations in which
we cannot guarantee convergence, we can acquire good heuristic evidence in favor of
convergence if the optimal cost of the k-th DMAOP becomes small as k →∞.

Remark 17. For the proof we never require that Λ is convex (though we require that ∂Λ
has Lebesgue measure zero, which follows from convexity), nor that g is log-concave,
though these assumptions ensure that the DMAOP is convex and, thus, feasibly solv-
able.

10. The continuous setting

We carry over the notation from §9. Proposition 12 is a special case of the following
result.

Lemma 18. With notation and hypotheses as in the above discussion, ϕ is the unique
solution of the following optimization problem:

minimize
ψ∈Cvx(Ω)∩C2(Ω)

F(ψ) :=

∫
Ω
h ◦ G(ψ, x) · ρ(x)dx

subject to ∇ψ(Ω) ⊆ Λ,
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where

G(ψ, x) := max
{

0,− log det
(
∇2ψ(x)

)
− log g (∇ψ(x)) + log f(x)

}
,

and h : [0,∞)→ R is convex and increasing with h(0) = 0, and ρ is a positive function
on Ω, bounded away from zero and infinity.

Remark 19. Notice that if g is log-concave, this optimization problem can be thought of
as an ‘infinite-dimensional convex optimization problem’ (where the value of ψ at each
point x is an optimization variable). To see that the problem can indeed be thought of
as ‘convex,’ notice/recall that

• ∇ψ(x) and ∇2ψ(x) are linear in ψ
• log ◦ det is concave on the set of positive semidefinite (symmetric) matrices
• the pointwise maximum of two convex functions is convex
• the composition of a convex increasing function with a convex function is convex
• the set of convex functions is a convex cone
• the specification that ∇ψ(Ω) ⊆ Λ is a convex constraint since Λ is convex.

These points also demonstrate that the discretized version of the problem (the DMAOP)
outlined above is a convex problem in the usual sense.

Remark 20. (Intuitive explanation of lemma.) We can think of the objective function in
the statement of the lemma as penalizing ‘excessive contraction’ of volume by the map
∇ψ (relative to the ‘desired’ distortion given by the ratio of f and g) while ignoring
‘excessive expansion.’ However, since we constrain ∇ψ to map Ω into Λ, we expect
that excessive expansion at any point will result in excessive contraction at another,
causing the value of the objective function to be positive. Thus we expect that the
optimal ψ must in fact be ϕ.

Proof. It is clear that F (ϕ) = 0 (since ϕ solves the Monge–Ampère equation). Fur-
thermore, it is clear that F (ψ) ≥ 0 always. Thus letting ψ be such that F (ψ) = 0, it
only remains to show that ψ = ϕ. For a contradiction, suppose that ψ 6= ϕ. Since ϕ
is the unique solution to the Monge–Ampère equation above, there exists some x0 ∈ Ω
such that

det
(
∇2ψ(x0)

)
6= f(x0)

g (∇ψ(x0))
.

If we have that the left-hand side is less than the right-hand side in the above, then
G(ψ, x0) > 0, so by continuity G(ψ, x) > 0 for x in a neighborhood of x0, and F (ψ) > 0.
Thus we can assume that in fact

det
(
∇2ψ(x)

)
≥ f(x)

g (∇ψ(x))

for all x, with strict inequality at a point x0. By continuity, we must also have strict
inequality on en entire neighborhood of x0. In addition, we have that det

(
∇2ψ(x)

)
is

bounded away from zero, so ψ is strictly convex. Thus ∇ψ is injective, and we obtain
by a change of variables∫

∇ψ(Ω)
g(y)dy =

∫
Ω
g (∇ψ(x)) det

(
∇2ψ(x)

)
dx
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>

∫
Ω
f(x)dx.

Of course, since ∇ψ(Ω) ⊆ Λ, we have in addition that
∫

Λ g(y)dy ≥
∫
∇ψ(Ω) g(y)dy. We

have arrived at a contradiction because
∫

Λ g =
∫

Ω f = 1. �

11. Discretizing the Monge–Ampère optimization problem

Next we discuss a discretized version of the above problem that can be feasibly solved
using standard convex optimization techniques. Once again, we carry over the notation
from §9.

Slightly more generally than in Definition 13, we can study optimizers {ψi, ηi}Ni=1 of

minimize
{ψi∈R,ηi∈Rn}Ni=1

F
(
{ψi, ηi}Ni=1

)
:= max

i∈{1,...,M}
ξ
(

0,− log detHi

(
ηi0 , . . . , ηin

)
− log g

(
1

n+1

∑n
j=0ηij

)
+ log f

(
1

n+1

∑n
j=0 xij

))
subject to ψj ≥ ψi + 〈ηi, xj − xi〉 , i, j = 1, . . . , N,(7)

ηi ∈ Λ, i = 1, . . . , N,(8)

Hi (ηi0 , . . . , ηin) � 0, i = 1, . . . ,M,(9)

where the Hi are as in Definition 13 and where ξ is an non-decreasing convex function
with ξ(x) = 0 for all x ≤ 0 and ξ(x) > 0 for all x > 0.

Further, notice that we can take ξ to be defined by

ξ(x) =

{
0, x ≤ 0

xp, x > 0
,

for any p ≥ 1. We may alternatively choose ξ to be smooth. For simplicity in the
proofs below we will just assume that ξ(x) = max(0, x).

Remark 21. Notice that the last constraint, (9), must be expressed more concretely in
order to obtain numerical solutions to the optimization problem. Since Λ is convex,
it can be well approximated by a convex polytope, so the last constraint could be
replaced by affine constraints corresponding to the faces of the polytope. However, it
might be more convenient in certain cases to express Λ as the sublevel set of a convex
function. For example, if Λ is the unit sphere, we could write the final constraint above
as ‖ηi‖ ≤ 1. In general, of course, the condition (9) is equivalent to ηi being in the unit
ball associated to the norm defined by Λ.

12. Convergence of solutions of the DMAOP

In the following we will often consider sequences of DMAOPs indexed by k. We will
maintain the notation from §11, adding “(k)” in superscripts as necessary.
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12.1. The objective function. First, we would like to understand the behavior of
the objective function of the DMAOP. In order to formulate a result characterizing this
behavior, we need a condition on the regularity of our sequence of almost-triangulations.

Definition 22. We say that a sequence{(
T

(k)
1 , . . . , T

(k)
Mk

)}∞
k=0

of almost-triangulations of Ω (in the sense of §9.2) satisfies the determinant regularity
property if there exists R > 0 such that

det
(
u

(k)
i,1 u

(k)
i,2 · · · u

(k)
i,n

)
≥ R

for all k and all i = 1, . . . ,Mk, where

u
(k)
j := ‖xij − xi0‖−1

(
xij − xi0

)
.

In particular, this property is satisfied in dimension two if the angles of the triangles
are bounded below uniformly in k.

Proposition 23. Let {(
T

(k)
1 , . . . , T

(k)
Mk

)}∞
k=0

be a sequence of almost-triangulations of Ω (in the sense of §9.2) satisfying the deter-

minant regularity property of Definition 22 and for which maxi diamT
(k)
i tends to zero

as k → ∞. Furthermore, suppose that the convex potential ϕ that defines the optimal
transport map from µ to ν is in the class C2,α

(
Ω
)

for some α > 0.
(i) The restriction of ϕ to the k-th almost-triangulation satisfies the constraints (7)–
(9) for all k sufficiently large, so in particular the k-th DMAOP is feasible for all k
sufficiently large.
(ii) Let dk be the value of the objective function associated to this restriction, i.e.,

dk := F

({
ϕ(x

(k)
j ),∇ϕ(x

(k)
j )
}N
j=1

)
.

Then limk dk = 0.

Denote by

(10)
{
ψ

(k)
j , η

(k)
j

}N
j=1

the solution to the k-th DMAOP. An immediate consequence is:

Corollary 24. Let ck be the value of the objective function on the solution of the
DMAOP associated with the k-th almost-triangulation, i.e.,

ck := F

({
ψ

(k)
j , η

(k)
j

}N
i=1

)
.

Then limk ck = 0.
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Proof of Proposition 23. (i) We claim that the feasibility conditions (7)–(9) are satisfied

for
{
ϕ(x

(k)
j ),∇ϕ(x

(k)
j )
}

for all k sufficiently large. First, the convexity of ϕ implies (7).

Second, (8) follows from (1). It remains to check (9). This follows immediately from
the strong convexity of ϕ ∈ C2,α (recall (1) and the fact f, g are positive), together
with the following lemma.

Lemma 25. Let H
(k)
i ≡ H(k)

i

({
∇ϕ(x

(k)
j )
})

. Then,

lim
k

max
i=1,...,Mk

‖H(k)
i −∇

2ϕ(x
(k)
i0

)‖∞ = 0.

Proof. First let h(k) = maxi diamT
(k)
i (so h(k) → 0 by assumption). We will denote

h(k) by h when this convention is clear.
Next we claim that for any ξ ∈ C1,α(Ω), there exists C > 0 such that |Duξ(x) −

Duξ(x
′)| ≤ C‖x − x′‖α for any unit vector u ∈ Rn and all x, x′ ∈ Ω. Indeed, we have

that there exist Cj > 0 such that |∂jξ(x)− ∂jξ(x′)| ≤ Cj‖x− x′‖α for all j = 1, . . . , n.
Now let u be a unit vector. Then

|Duξ(x)−Duξ(x
′)| = |u · ∇ξ(x)− u · ∇ξ(x′)|
≤ ‖u‖‖∇ξ(x)−∇ξ(x′)‖

=

 n∑
j=1

|∂jξ(x)− ∂jξ(x′)|2
1/2

≤

 n∑
j=1

C2
j ‖x− x′‖2α

1/2

= C‖x− x′‖α,

where C =
(∑n

j=1C
2
j

)1/2
, and the claim is proved. The claim implies that in fact

there exists C such that |Du(∂lϕ)(x)−Du(∂lϕ)(x′)| ≤ C‖x− x′‖α for all l = 1, . . . , n,
all unit vectors u ∈ Rn, and all x, x′ ∈ Ω.

Fix some i. Then with Ai and Bi defined as in Definition 13 (though now depen-

dent on k), notice that the (j, l)-th entry of Ai∇2ϕ (xi0) is
(
xij − xi0

)T
(∇∂lϕ (xi0)),

which is of course equal to Dvj (∂lϕ) (xi0) , where Dv denotes the directional derivative

in the direction v and where vj := xij − xi0 . Now ηij = ∇ϕ
(
xij
)
, so ηij − ηi0 =

∇ϕ
(
xij
)
−∇ϕ (xi0), and the (j, l)-th entry of Bi is ∂lϕ

(
xij
)
− ∂lϕ (xi0).

Now let ζ = ∂lϕ, x = xi0 , y = xij , τj = ‖xij − xi0‖, and uj = τ−1
j vj (so u is unit

length). Then Dvj (∂lϕ) (xi0) = τjDujζ(x), and∣∣∣[Bi]jl − [Ai∇2ϕ (xi0)
]
jl

∣∣∣ =
∣∣ζ(y)− ζ(x)− τjDujζ(x)

∣∣
=

∣∣∣∣∫ τj

0
Dujζ ((τj − t)x+ ty) dt− τjDujζ(x)

∣∣∣∣
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=

∣∣∣∣∫ τj

0

[
Dujζ ((τj − t)x+ ty)−Dujζ(x)

]
dt

∣∣∣∣
≤

∫ τj

0

∣∣Dujζ ((τj − t)x+ ty)−Dujζ(x)
∣∣ dt

≤
∫ τj

0
C ‖((τj − t)x+ ty)− x‖α dt

≤ C

∫ τj

0
ταj dt

= Cτα+1
j .

Now write Ai = DU , where D = diag(τ1, . . . , τn) and U = (u1 u2 · · · un)T . Then we
obtain∣∣∣[D−1Bi

]
jl
−
[
D−1Ai∇2ϕ (xi0)

]
jl

∣∣∣ =
∣∣∣τ−1
j [Bi]jl − τ

−1
j

[
Ai∇2ϕ (xi0)

]
jl

∣∣∣
≤ Cταj ≤ Chα,

where C is independent of k, i, j, and l. Now U−1 = 1
detU

(
(−1)j+lMjl

)T
, where

Mjl is the (j, l)-th minor of U . Since the uj are unit vectors, in particular we have
that |Ujl| ≤ 1. Since Mjl is a polynomial of (n − 1)! terms in the Ujl, we have that

|Mjl| ≤ (n − 1)! for all j, l, and hence
∣∣∣[U−1

]
jl

∣∣∣ ≤ (n−1)!
detU . By assumption, detU

is bounded below by a constant R > 0 (independent of k and i), so we have that∣∣∣[U−1
]
jl

∣∣∣ ≤ R′ for R′ = R−1(n− 1)! > 0 (independent of k and i). Then it follows that∣∣∣[U−1D−1Bi
]
jl
−
[
U−1D−1Ai∇2ϕ (xi0)

]
jl

∣∣∣ =
∣∣∣[U−1

(
D−1Bi −D−1Ai∇2ϕ (xi0)

)]
jl

∣∣∣
≤ nR′

∣∣∣[D−1Bi
]
jl
−
[
D−1Ai∇2ϕ (xi0)

]
jl

∣∣∣
≤ nR′Chα,

where R′ and C are positive constants that are independent of k and i. Of course, since
Ai = DU , this means precisely that maxi=1,...,Mk

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥
∞ ≤ nR′Chα.

Recall that h = h(k) is a function of k, and h(k) → 0 as k → ∞ by assumption.
Therefore we have shown that maxi=1,...,Mk

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥
∞ → 0 as k → ∞.

Since ∇2ϕ (xi0) is symmetric, we have that

max
i=1,...,Mk

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥
∞ = max

i=1,...,Mk

∥∥∥(A−1
i Bi

)T −∇2ϕ (xi0)
∥∥∥
∞
,

so

max
i=1,...,Mk

∥∥Hi −∇2ϕ (xi0)
∥∥
∞ = max

i=1,...,Mk

∥∥∥∥1

2
A−1
i Bi +

1

2

(
A−1
i Bi

)T −∇2ϕ (xi0)

∥∥∥∥
∞

≤ max
i=1,...,Mk

∥∥∥∥1

2
A−1
i Bi −

1

2
∇2ϕ (xi0)

∥∥∥∥
∞

+ max
i=1,...,Mk

∥∥∥∥1

2

(
A−1
i Bi

)T − 1

2
∇2ϕ (xi0)

∥∥∥∥
∞
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= max
i=1,...,Mk

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥
∞ ,

and the last expression tends to zero as k →∞, as was to be shown.
�

(ii) Given that the feasibility conditions (7)–(9) hold, dk is well-defined. The rest of
the proof is devoted to showing that dk converges to zero.

For any x, let i(k)(x) be the index (an integer in {1, . . . ,M}) of a simplex containing x

in the k-th almost-triangulation. Let H̃(k) and ζ(k) be piecewise constant matrix-valued
functions on Ω defined by

(11) H̃(k)(x) := H
(k)

i(k)(x)
≡ H(k)

i(k)(x)

({
∇ϕ(x

(k)
j )
})

,

and

(12) ζ(k)(x) := ∇2ϕ
(
x

(k)

i(k)(x)0

)
.

Then we have from Lemma 25 that ‖H̃(k) − ζ(k)‖∞ → 0. Notice that the entries

of H̃(k) and ζ(k) are bounded over k because ∇2ϕ(Ω) is bounded. It follows that

limk ‖ log det H̃(k)− log det ζ(k)‖∞ = 0 (note here that ∇2ϕ(Ω) is compact and entirely
contained in the set of positive-definite matrices), and so also

(13) lim
k

max
i=1,...,Mk

| log detH
(k)
i − log det∇2ϕ(x

(k)
i0

)| = 0.

Now since f is uniformly continuous and bounded away from zero on Ω, we have
that

(14) max
i=1,...,Mk

| log f(x
(k)
i0

)− log f(y
(k)
i )| → 0,

where

y
(k)
i :=

1

n+ 1

n∑
j=0

x
(k)
ij

denotes the barycenter of Ti.
Next, since g is uniformly continuous and bounded away from zero on Λ and ∇ϕ is

Lipschitz, it follows that

(15) max
i=1,...,Mk

| log g(∇ϕ(x
(k)
i0

))− log g(z
(k)
i )| → 0,

where z
(k)
i is the barycenter of the simplex formed by the gradients at the vertices of

the i-th simplex, i.e.,

z
(k)
i :=

1

n+ 1

n∑
j=0

∇ϕ(x
(k)
ij

).

Now, by (1),

(16) det∇2ϕ(x
(k)
i0

) =
f(x

(k)
i0

)

g(∇ϕ(x
(k)
i0

))
.
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Then,

dk ≤ max
i=1,...,Mk

| log detH
(k)
i − log f(y

(k)
i ) + log g(z

(k)
i )|

≤ max
i
| log detH

(k)
i − log f(x

(k)
i0

) + log g(∇ϕ(x
(k)
i0

))|

+ max
i
| log f(x

(k)
i0

)− log f(y
(k)
i )|+ max

i
| log g(∇ϕ(x

(k)
i0

))− log g(z
(k)
i )|.

The last term tends to zero with k by (15), while the second does so by (14). Finally,
the first term tends to zero with k by (13) and (16). �

12.2. A piecewise affine approximate Brenier potential. Next we construct a
piecewise linear convex function φ(k) associated with the solution of the k-th DMAOP.

Recall from (10) that we denoted by {(ψ(k)
j , η

(k)
j )} the solution to the k-th DMAOP.

This data gives rise to the functions {φ(k)}k defined in (4).
We now turn to the proof of our main theorem, stating that the approximate Brenier

potentials φ(k) converge to the Brenier potential ϕ.

Proof of Theorem 14. Let D be a closed disk containing Ω in its interior. For the proof
it will suffice to show that every subsequence of φ(k) that converges uniformly on D
converges to ϕ on Ω. Indeed, this follows by the Arzela–Ascoli theorem since {φ(k)}k
is an equicontinuous, uniformly bounded family (since η

(k)
j ∈ Λ for all k, j, with Λ

bounded, and φ(k)(0) = 0).

Thus, assume that φ(k) → φ uniformly for some φ, and we need only show that
φ = ϕ on Ω. Notice that φ is convex as a pointwise limit of convex functions.

12.3. First order behavior of the barycenteric extension of the gradient of the
approximate Brenier potentials. The subdifferentials ∂φ(k) are piecewise constant
with jump discontinuities. The objective function of the DMAOP provides us with some
sort of control over the ‘second-order properties’ of the φ(k), but these properties are
neither well-defined at this stage nor readily accessible because the φ(k) are piecewise
linear. In order to get a handle on the ‘second-order convergence’ of the φ(k), we
want to replace these subdifferentials with continuous, piecewise-affine functions that
interpolate rather than jump, which we may then differentiate once again.

Thus, with (6) in mind, we define g(k) by barycentrically interpolating the values

{η(k)
ij
}nj=1 over the i-th simplex, for all i = 1, . . . ,Mk, namely, for each x in Ti =

Conv(xi0 , ...xin), write x =
∑
σjxij , with σj ∈ [0, 1]. Then

(17) gk(x) :=

n∑
j=0

σjη
(k)
ij
, if x ∈ Ti

(note that this is well-defined also for x lying in more than one simplex). Alternatively,

gk is the unique vector-valued function that is affine on each simplex T
(k)
j and satisfies

gk(x
(k)
i ) = η

(k)
i for all i.

Lemma 26. H(k)(x) := H
(k)

i(k)(x)

({
ψ

(k)
j

})
= symm

(
∇g(k)(x)

)
for x ∈

⋃
i int (Ti).
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Proof. We fix some k and then freely omit k from some of our notation in the remainder
of the proof. Also we fix i and work within the triangle Ti. Now let vj = xij − xi0 .

Then evidently Dvjg
(k) ≡ ηij − ηi0 (note that this is an equation of vectors) on int (Ti)

because g(k) is affine on Ti with g(k)
(
xij
)

= ηij . Now Dvjg
(k) = vj · ∇g(k), so Dvjg

(k)

is the j-th row of Ai∇g(k), where ∇g(k) denotes the matrix with j-th row ∂
∂xj

g(k) and

where Ai is as in Definition 13. Since Dvjg
(k) = ηij − ηi0 is also the j-th row of Bi, we

have that Bi = Ai∇g(k), i.e., ∇g(k) = A−1
i Bi. Now Hi = symm

(
A−1
i Bi

)
, so it follows

that Hi = symm
(
∇g(k)

)
, as was to be shown.

�

We want to show that g(k) approaches ∂φ in some sense.

Lemma 27. g(k) → ∇φ almost everywhere.

Proof. By Theorem 62 (see the appendix), for every x and every ε > 0, there exists

a δ > 0 and K such that ∂φ(k)(y) ⊂ ∂φ(x) + Bε(0) for all y ∈ Bδ(x) and all k ≥ K.
(To use this theorem, we have employed the fact that if a sequence of convex functions
converges uniformly on bounded sets to some convex function, then the sequence epi-
converges to this function. See Theorem 61.) Fix a point x ∈ Ω where φ is differentiable
and an ε > 0. Additionally, take δ > 0 and K according to the aforementioned result.
If necessary, take K even larger, so that for all k ≥ K the maximal distance of x
to the vertices of the simplices containing it is at most δ. We assume from now on

that k ≥ K. Thus for all vertices x
(k)
j of any simplex containing x, we have that

∂φ(k)(x
(k)
j ) ⊂ ∇φ(x)+Bε(0). In particular, supposing that g(k)(x) has been obtained by

interpolation of {η(k)
ij
}nj=0 for some simplex Ti containing x, and since η

(k)
ij
∈ ∂φ(k)(x

(k)
ij

),

we have that η
(k)
ij
∈ ∇φ(x)+Bε(0). Since g(k)(x) is a convex combination of the η

(k)
ij

, we

have that g(k)(x) ∈ ∇φ(x)+Bε(0). This proves that g(k) → ∇φ almost everywhere. �

12.4. Second order control. Unfortunately, we do not have enough regularity to
maintain that ∇g(k) approaches ∇2φ almost everywhere. We can obtain this regularity
by convolving everything with a sequence of mollifiers.

The motivation for doing so is fairly intuitive. Strictly speaking, the second-order
behavior of the φ(k) is completely trivial. The second-derivatives of the φ(k) are every-
where either zero or undefined. However, by virtue of solving the DMAOP, the φ(k)

do actually contain second-order information in some sense. Indeed, we may think of
the graphs of the φ(k) as having some sort of curvature that becomes apparent when
we ‘blur’ φ(k) on a small scale and then take k large enough so that the scale of the
discretization is much smaller than the scale of the blurring. This blurring is achieved
by convolving with smooth mollifiers.

Let ξε be a standard set of mollifiers (supported on Bε(0)). Notice that g(k) is only
defined on the almost-triangulation of Ω, so we run into trouble near the boundary
when convolving with ξε. Thus, define regions Ωε ⊂ Ω for ε > 0 such that: (i) for
any ε > 0, we have that an ε-neighborhood of Ωε is contained within the k-th almost-
triangulation for all k sufficiently large, (ii) Ωε ⊂ Ωε′ for ε′ ≤ ε, and (iii)

⋃
ε>0 Ωε = Ω

(so limε→0 µ(Ωε) = µ(Ω)).
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We aim to show the following:

Lemma 28. H̃(k)
ε := ∇g(k) ?ξε → ∇2(φ?ξε) uniformly (in each of the n2 components).

First, we require some auxiliary results:

Lemma 29. g(k) ? ξε → ∇φ ? ξε uniformly (in each of the n components).

Proof. First, we claim that g(k) ? ξε → ∇φ ? ξε pointwise on Ωε as k →∞. (Note that
∇φ ? ξε is everywhere defined because ∇φ exists almost everywhere.) To check that
this is true, note that for x ∈ Ωε,

|g(k)?ξε(x)−∇φ?ξε(x)| = |
∫

(g(k)(y)−∇φ(y))ξε(y−x) dy| ≤
∫
|g(k)(y)−∇φ(y)|ξε(y−x) dy.

Since |g(k)(y)−∇φ(y)|ξε(x−y)→ 0 a.e. and the g(k) are uniformly bounded, our claim
follows from bounded convergence (note that ε is constant in this limit). Similarly,

φ(k) ? ξε → φ ? ξε pointwise because the φ(k) are uniformly bounded.
Now notice that the g(k) ? ξε are uniformly bounded in k (because the g(k) are

uniformly bounded), and furthermore, ∇(g(k) ? ξε) = g(k) ? ∇ξε. Let B be such that

‖g(k)
i ‖∞ ≤ B for all i = 1, . . . , n, and write

|g(k)
i ?∇ξε(x)| = |

∫
g

(k)
i (y)∇ξε(x− y) dy| ≤ B|

∫
∇ξε(x− y) dy|,

so the g(k) ? ξε have uniformly bounded derivatives (in each component).
The statement now follows from the general fact that if a uniformly bounded sequence

of differentiable functions fn with uniformly bounded derivatives satisfies fn → f point-
wise, then fn → f uniformly. �

Lemma 30. (i) ∇φ ? ξε = ∇(φ ? ξε) and (ii) ∇g(k) ? ξε = ∇(g(k) ? ξε).

Proof. Notice that for h 6= 0

1

h
[φ ? ξε(x+ ejh)− φ ? ξε(x)] =

1

h

[∫
ξε(x+ ejh− y)g

(k)
i (y) dy −

∫
ξε(x− y)φ(y) dy

]
=

1

h

[∫
ξε(x− y)φ(y + ejh) dy −

∫
ξε(x− y)φ(y) dy

]
=

∫
ξε(x− y) · 1

h
[φ(y + ejh) dy − φ(y)] dy.

Clearly the integrand in the last expression approaches ξε(x−y)·∂jφ almost everywhere
as h → 0 (since φ is differentiable a.e.). Now φ is Lipschitz continuous (since its
subgradients are bounded), so the integrand is uniformly bounded over h, and by
bounded convergence we obtain ∂j(φ? ξε) = ∂jφ? ξε, so ∇φ? ξε = ∇(φ? ξε), as desired.

Evidently g
(k)
i is Lipschitz continuous, so by the same reasoning we obtain the second

desired equality. �

Proof of Lemma 28. This will follow from another general fact: for one-variable smooth
functions fn, f : I → R (where I is a closed interval of positive length) such that (i)
fn → f uniformly, (ii) the f ′′n are uniformly bounded, and (iii) f ′′ is bounded, we have
that f ′n → f ′ uniformly. This follows from an application of the Landau-Kolmogorov
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inequality ‖g′n‖∞ ≤ C‖gn‖
1
2∞‖g′′n‖

1
2∞ (see for instance Chui and Smith [13]) for smooth

g : I → R such that g, g′′ are bounded. We can apply this inequality to gn = fn − f
to obtain ‖f ′n − f ′‖∞ ≤ C‖fn − f‖

1
2∞‖f ′′n − f ′′‖

1
2∞. Since f ′′ is bounded and the f ′′n are

uniformly bounded, we have that ‖f ′′n−f ′′‖
1
2∞ is uniformly bounded in n. And of course

‖fn − f‖
1
2∞ → 0 by the uniform convergence fn → f . Therefore ‖f ′n − f ′‖∞ → 0 as

claimed.
Now the functions ∂2

j (g
(k)
i ? ξε) = g

(k)
i ? ∂2

j ξε are uniformly bounded over the k

(following from the uniform boundedness of g
(k)
i as above). Also, since ∇φ ? ξε =

∇(φ ? ξε) by (i) of Lemma 30, we have that ∇(∇φ ? ξε) = ∇2(φ ? ξε), which is smooth
because φ ? ξε is smooth. Therefore ∇(∇φ ? ξε) is bounded in all of its components.

Let x ∈ Ωε. Then fix i, j and let δ > 0 be small enough such that I := {x+ tej : t ∈
[−δ, δ]} ⊂ Ωε. Recall that (by Lemma 29) g

(k)
i ?ξε → ∂iφ?ξε uniformly. Then by restrict-

ing to the j-th variable and applying our fact we obtain that ∂j(g
(k)
i ?ξε)→ ∂j(∂iφ?ξε)

uniformly on I 3 x. Since x, i, and j were arbitrary, we see that ∇(g(k) ? ξε) →
∇(∇φ?ξε) pointwise (though we cannot yet say that this convergence is uniform). The
uniformity of the convergence follows from our earlier fact that pointwise convergence,
together with uniform boundedness and uniform boundedness of derivatives, implies
uniform convergence. Then (i) and (ii) of Lemma 30 together imply the desired result.

�

We have shown that H̃(k)
ε := ∇g(k) ? ξε → ∇2(φ ? ξε) uniformly. By the symmetry of

∇2(φ ? ξε), it follows that the symmetrized matrix

H(k)
ε :=

1

2
H̃(k)
ε +

1

2

(
H̃(k)
ε

)T
converges to ∇2(φ ? ξε) uniformly. We have shown the following:

Lemma 31. H(k)
ε := symm

(
∇g(k) ? ξε

)
→ ∇2(φ ? ξε) uniformly.

12.5. Obtaining a density inequality. In this subsection we will employ the fact

that {ψ(k)
j , η

(k)
j }Nj=1 solves the k-th DMAOP in order to obtain an inequality that con-

trols (in a certain sense) the deviation of detH(k)
ε in one direction from the desired

ratio of densities appearing in the Monge-Ampère equation. This will suggest that
∇(φ ? ξε) cannot ‘excessively’ shrink volume.

Lemma 32.

log detH(k)
ε ≥ log

f ◦ τ (k)

g ◦ γ(k)
? ξε − ck.

Proof. By the continuity of det, it follows from Lemma 31 that det
(
H(k)
ε

)
→ det∇2(φ?

ξε) pointwise. Let x be any point. Then

log det
(
H(k)
ε (x)

)
= log det

((
H(k) ? ξε

)
(x)
)

= log det

∫
H(k)(y − x)ξε(y) dy
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≥
∫

log det
(
H(k)(y − x)

)
ξε(y) dy

=
(

log detH(k) ? ξε

)
(x),

where we have used Jensen’s inequality and the concavity of log det on the positive
semidefinite cone in the penultimate step. More compactly, we have:

(18) log detH(k)
ε ≥

(
log detH(k)

)
? ξε.

Now with ck denoting the optimal cost of the k-th probem, we have by optimality
that

− log detH(k)(x)− log g(γ(k)(x)) + log f(τ (k)(x)) ≤ ck,

where τ (k)(x) is the center of simplex i(k)(x) and γ(k)(x) is the mean of the η
(k)
j at the

vertices of simplex i(k)(x). We can rewrite this inequality as

log detH(k)(x) ≥ log
f(τ (k)(x))

g(γ(k)(x))
− ck.

Therefore by (18) we have the desired result.
�

12.6. Passing to the limit in k. The goal of this subsection is to ‘take the limit as
k → ∞’ of the result of the preceding subsection so that we can employ Lemma 31.
The proof of the following lemma is somewhat technical and relies on convex analysis,
though the result should seem intuitive. The main obstacle is controlling the behavior
of τ (k) and γ(k).

Lemma 33. With φε := φ ? ξε, we have

det∇2(φε)(x) ≥ inf{f(y) : y ∈ Bε(x)}
sup{g (∇φ(y)) : y ∈ Bε(x),∇φ(y) exists}

,

for x ∈ Ωε.

Remark 34. Notice that in the case that f and g are uniform densities on Ω and Λ,
respectively, the proof of this lemma is considerably easier. Indeed, we can skip right
to (25) below. Even in the case that only g is uniform, the proof is much easier. This is

true because the most difficult part of the proof is controlling the behavior of γ(k), which
requires results from convex analysis, most crucially a result on the ‘locally uniform’
convergence of the subdifferentials of a sequence of convergent convex functions.

Proof. Let α, β > 0. Fixing some x and using [2, Theorem 8.3] again we have that for

every z ∈ Bα(x), there exists δz > 0 and Nz,β such that ∂φ(k)(y) ⊂ ∂φ(z) + Bβ(0) for
all y ∈ Bδz(z) and k ≥ Nx. By compactness, there exist z1, . . . , zM such that the Bδi
cover Bα(x), where δi := δzi . Thus we have that

(19) ∂φ(k)(y) ⊂

 ⋃
z∈Bα(x)

∂φ(z)


β
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for all k ≥ N ′x,α,β := maxiNzi,β and all y ∈ Bα(x), where [·]β denotes the β-neighborhood
of its argument.

For k sufficiently large (i.e., k ≥ Nα for some Nα depending only on α), we have

that the simplex i(k)(x) containing x is contained in Bα(x) by the regularity of our

sequence of almost-triangulations, so in particular τ (k)(x) ∈ Bα(x). Also, γ(k)(x) is a

convex combination of n + 1 elements of
⋃
y∈Bα(x) ∂φ

(k)(y), so by (19) we have that

γ(k)(x) ∈ Conv

([⋃
z∈Bα(x) ∂φ(z)

]
β

)
for all k ≥ Nx,α,β := max{Nα, N

′
x,α,β}.

Thus for k sufficiently large (i.e., k ≥ Nx,α,β)

(20) log
f(τ (k)(x))

g(γ(k)(x))
≥ log

min{f(y) : y ∈ Bα(x)}

max

{
g(z) : z ∈ Conv

([⋃
z∈Bα(x) ∂φ(z)

]
β

)} .
For almost every x (see Theorem 58 and Theorem 57), we have that for any γ > 0,

there exists α > 0 such that

∂φ(x+ v) ⊂ ∇φ(x) +Bγ(0)

for all v ∈ Bα(0). Therefore, for positive α sufficiently small (i.e., 0 < α < Cx,γ
for some Cx,γ), z ∈ Bα(x) implies that ∂φ(z) ⊂ ∇φ(x) + Bγ(0) = Bγ(∇φ(x)), so⋃
z∈Bα(x) ∂φ(z) ⊂ Bγ(∇φ(x)). Then it follows that

[⋃
z∈Bα(x) ∂φ(z)

]
β
⊂ Bγ+β(∇φ(x)),

implying that

(21) Conv


 ⋃
z∈Bα(x)

∂φ(z)


β

 ⊂ Bγ+β(∇φ(x)).

Therefore for a.e. x and any α, β, γ > 0 with α ∈ (0, Cx,γ) we have by (20) and (21)
that

log
f(τ (k)(x))

g(γ(k)(x))
≥ log

min{f(y) : y ∈ Bα(x)}
max {g(z) : z ∈ Bγ+β(∇φ(x))}

for k ≥ Nx,α,β. It follows that

(22) lim inf
k→∞

log
f(τ (k)(x))

g(γ(k)(x))
≥ log

min{f(y) : y ∈ Bα(x)}
max {g(z) : z ∈ Bγ+β(∇φ(x))}

.

for a.e. x and any α, β, γ > 0 with α ∈ (0, Cx,γ). Clearly

(23) lim
α→0

min{f(y) : y ∈ Bα(x)} = f(x)

(by the continuity of f), and

(24) lim
(β,γ)→0

max {g(z) : z ∈ Bγ+β(∇φ(x))} = g(∇φ(x))

(also by continuity) for a.e. x. Taking limits in (38) (first α→ 0, followed by (β, γ)→ 0)
and applying (23) and (24), we obtain

(25) lim inf
k→∞

log
f(τ (k)(x))

g(γ(k)(x))
≥ log

f(x)

g(∇φ(x))
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for a.e. x. Now recalling from Lemma 32 that log detH(k)
ε ≥ log f◦τ (k)

g◦γ(k) ? ξε − ck and

using the fact that ck → 0 (Corollary 24), we see for x ∈ Ωε that

lim inf
k→∞

log detH(k)
ε (x) ≥ lim inf

k→∞

[(
log

f ◦ τ (k)

g ◦ γ(k)
? ξε

)
(x)− ck

]
(26)

= lim inf
k→∞

(
log

f ◦ τ (k)

g ◦ γ(k)
? ξε

)
(x)

= lim inf
k→∞

∫
ξε(x− y) · log

f(τ (k)(y))

g(γ(k)(y))
dy

≥
∫
ξε(x− y) · lim inf

k→∞
log

f(τ (k)(y))

g(γ(k)(y))
dy

≥
∫
ξε(x− y) · log

f(y)

g(∇φ(y))
dy

=

(
log

f

g ◦ ∇φ
? ξε

)
(x),(27)

where we have used the Fatou-Lebesgue theorem to pass the lim inf within the integral

and (25) in the penultimate step. In particular, it follows that detH(k)
ε ≥ 1

2 ·
min f
max g > 0 for

k sufficiently large, so recalling from earlier (Lemma 31) that detH(k)
ε → det∇2(φ?ξε),

we now have in fact that log detH(k)
ε → log det∇2(φ ? ξε) (so the sequence in the LHS

of (26) is actually convergent). Combining this with (27) we have

log det∇2(φ ? ξε) ≥ log
f

g ◦ ∇φ
? ξε,

which implies (since ξε is supported on Bε(0))

log det∇2(φ ? ξε)(x) ≥ log
inf{f(y) : y ∈ Bε(x)}

sup{g (∇φ(y)) : y ∈ Bε(x),∇φ(y) exists}
,

for x ∈ Ωε, and the lemma follows. �

12.7. Passing to the limit in ε. In this subsection we consider the measures νε ob-
tained by pushing forward the restriction of µ to Ωε by ∇φε. Using our determinant
inequality from the preceding subsection, we will show that a subsequence of these
measures (roughly speaking) converges weakly to the target measure ν. Intuitively
speaking, our inequality from the last subsection says that ∇φε does not shrink vol-
ume ‘excessively’ at any point. Given that the image of ∇φε must lie within Λ, it is
understandable that our claimed result should hold.

Since convolution with a non-negative kernel preserves convexity, φε is in fact a
convex function. Lemma 33 implies that φε has positive definite Hessian on Ωε, and
it follows that ∇φε is injective on Ωε. (Indeed, for any two points x, y ∈ Ωε, consider
the restriction of φε to the line containing these two points. The second directional
derivative in the direction of a unit vector parallel to this line must be non-negative
along this line and strictly positive near both x and y (after possibly flipping the
direction of the unit vector). Thus ∇x and ∇y cannot agree.)
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By Theorem 11.1 of Big Villani νε := (∇φε)# (µ|Ωε) is absolutely continuous on
Λε := ∇φε(Ωε) with density

gε(x) = f
(

(∇φε)−1 (x)
)
· det

[
∇2φε

(
(∇φε)−1 (x)

)]−1

≤ f
(

(∇φε)−1 (x)
)
·

sup
{
g(∇φ(y)) : y ∈ Bε

(
(∇φε)−1 (x)

)
,∇φ(y) exists

}
inf
{
f(y) : y ∈ Bε

(
(∇φε)−1 (x)

)}(28)

=: gε(x)(29)

for x ∈ Λε, where the inequality follows from Lemma 33.
Now (∇φε)−1 (Λ\Λε) does not intersect Ωε (because ∇φε(Ωε) = Λε), so νε(Λ\Λε) =

0. Therefore in fact νε is absolutely continuous on all of Λ with density gε(x) = 0 for
x ∈ Λ\Λε. Setting gε := g on Λ\Λε, we have (since g ≥ 0 everywhere) that

(30) gε ≤ gε
on all of Λ. We need the following result:

Lemma 35. gε → g a.e. on Λ\∂φ (Sing(φ)) as ε → 0, where Sing(φ) denotes the set
of points at which φ is not differentiable.

Remark 36. Similarly to the proof of Lemma 33 (and for similar reasons), the proof
of this lemma becomes considerably easier in the case that g is a uniform density and
trivial in the case that both f and g are uniform densities.

To prove the lemma in full generality, we need a preliminary result. Before even
stating this result, we make several technical remarks. In what follows we consider φ to
be defined on D as the pointwise limit of the φ(k) and extended to all of Rn by taking
the value +∞ outside of D. (Note that thus far, we have only considered φ inside of
Ω ⊂ D, and there has been no need to consider its behavior elsewhere). Accordingly, φ
is convex on Rn and, in addition, lower semi-continuous. It is clear from the definition
of the convex conjugate that φ∗ (the convex conjugate of φ) is finite on all of Rn, so
int domφ∗ = domφ∗ = Rn.

Lemma 37. (i) ∇φ∗ε = (∇φε)−1 on Λε, where φ∗ε is the convex conjugate of φε.
(ii) ∂φ∗ε → ∇φ∗ almost everywhere.

Proof. First note that for x ∈ Λε, Lemma 33 implies in particular that φε has positive
definite Hessian at (∇φε)−1 (x) ∈ Ωε, so φ∗ε (the convex conjugate of φε) is differentiable

at x with ∇φ∗ε(x) = (∇φε)−1 (x).
It remains only to show (ii). Note that φε and φ are actually defined on all of Rn

and that φε → φ uniformly on compact subsets (as φ is continuous). Then by Theorem
61, the φε epi-converge to φ. Then by Theorem 66, we have that the φ∗ε epi-converge
to φ∗. Again using Theorem 62, we have that ∂φ∗ε(x)→ ∇φ∗(x) for all x ∈ int domφ∗

such that ∇φ∗(x) exists (i.e., almost everywhere). �

Proof of Lemma 35. Let x ∈ Λ\∂φ (Sing(φ)) be an x for which

∂φ∗ε(x)→ ∇φ∗(x)
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(so in particular ∇φ∗ is differentiable at x), so by (ii) of Lemma 37 it will suffice to
show that gε(x)→ g(x).

Let E = {ε > 0 : x ∈ Λε}. Since gε(x) = g(x) whenever ε /∈ E, it is clear that it
will suffice to show that gεj (x)→ g(x) for all sequences εj ∈ E that tend to zero. Let

εj be such a sequence. Notice that since x ∈ Λεj for all j, by (i) of Lemma 37 we have

that ∇φ∗εj (x) =
(
∇φεj

)−1
(x) for all j, so

(31)
(
∇φεj

)−1
(x)→ ∇φ∗(x).

Let γ > 0. Then by (31), there exists N such that for j ≥ N we have∣∣∣(∇φεj)−1
(x)−∇φ∗(x)

∣∣∣ < γ/2.

We can assume that in fact N is large enough such that εj < γ/2 for all j ≥ N , so then

Bεj

((
∇φεj

)−1
(x)
)
⊂ Bγ (∇φ∗(x)) ∩ Ω

for j ≥ N . Thus for all such j we have that

inf
{
f(y) : y ∈ Bεj

((
∇φεj

)−1
(x)
)}
≥ inf {f(y) : y ∈ Bγ (∇φ∗(x)) ∩ Ω} .

Then taking the lim inf as j → ∞ followed by the limit as γ → 0, we have (using the
continuity of f) that

lim inf
j→∞

inf
{
f(y) : y ∈ Bεj

((
∇φεj

)−1
(x)
)}
≥ f (∇φ∗(x)) .

Also notice that

inf
{
f(y) : y ∈ Bεj

((
∇φεj

)−1
(x)
)}
≤ f

((
∇φεj

)−1
(x)
)
−→
j→∞

f (∇φ∗(x))

(where the limit follows by the continuity of f). Then we have that

lim sup
j→∞

inf
{
f(y) : y ∈ Bεj

((
∇φεj

)−1
(x)
)}
≤ f (∇φ∗(x)) ,

so in fact

lim
j→∞

inf
{
f(y) : y ∈ Bεj

((
∇φεj

)−1
(x)
)}

= f (∇φ∗(x)) .

It follows that

lim
j→∞

f
((
∇φεj

)−1
(x)
)

inf
{
f(y) : y ∈ Bεj

((
∇φεj

)−1
(x)
)} = 1.

Therefore for the lemma it remains only to show that

(32) lim
j→∞

sup
{
g(∇φ(y)) : y ∈ Bεj

((
∇φεj

)−1
(x)
)
,∇φ(y) exists

}
= g(x).

By the same arguments as above we have that

lim sup
j→∞

sup
{
g(∇φ(y)) : y ∈ Bεj

((
∇φεj

)−1
(x)
)
,∇φ(y) exists

}
≤ sup {g(∇φ(y)) : y ∈ Bγ (∇φ∗(x)) ∩ Ω,∇φ(y) exists}(33)
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for any γ > 0.
We claim that φ is differentiable at ∇φ∗(x). By Theorem 65, y ∈ ∂φ(∇φ∗(x)) if and

only if ∇φ∗(x) ∈ ∂φ∗(y). Thus plugging in x for y, we see that x ∈ ∂φ(∇φ∗(x)). By
assumption, x /∈ ∂φ (Sing(φ)), so it must be that ∇φ∗(x) /∈ Sing(φ), as claimed. In
particular, we have also shown that ∇φ (∇φ∗(x)) = x.

Now by Theorem 58, for any α > 0 there exists γ > 0 such that

(34) ∂φ(∇φ∗(x) + v) ⊂ ∇φ(∇φ∗(x)) +Bα(0) = Bα(x)

for all v ∈ Bγ(0). Together with the continuity of g, this implies that the RHS of (33)
converges to g(x) as γ → 0, so we have

lim sup
j→∞

sup
{
g(∇φ(y)) : y ∈ Bεj

((
∇φεj

)−1
(x)
)
,∇φ(y) exists

}
≤ g(x).

Of course, we also have

sup
{
g(∇φ(y)) : y ∈ Bεj

((
∇φεj

)−1
(x)
)
,∇φ(y) exists

}
≥ g

(
∇φ

((
∇φεj

)−1
(x) + vj

))
,

where vj is a vector with length less than εj chosen so that φ is differentiable at(
∇φεj

)−1
(x) + vj . Then following from (34), the continuity of g, (31), and the fact

that ∇φ (∇φ∗(x)) = x, we have that the RHS tends to g(x) as j → ∞. Thus (32)
holds, and the proof of the lemma is complete.

�

Lemma 38. For any sequence εn → 0, µ(Ωεn)−1νεn is a sequence of probability mea-
sures converging weakly to ν(Λ)−1ν.

Proof. Let εn → 0, and let ζ be a bounded continuous function on Rn. Then by the
change of variables formula for the pushforward measure,

µ(Ωεn)−1

∫
ζ dνεn = µ(Ωεn)−1

∫
ζ ◦ ∇φεn dµ|Ωεn

= µ(Ωεn)−1

∫
Ω
ζ ◦ ∇φεn · χΩεn · f dx.

Now ∇φεn → ∇φ pointwise almost everywhere, and χΩεn → χΩ pointwise, so (recalling
that ζ is bounded and continuous), we have by bounded convergence and the fact that
µ(Ωεn)→ µ(Ω) that

lim
n→∞

µ(Ωεn)−1

∫
ζ dνεn = µ(Ω)−1

∫
Ω
ζ ◦ ∇φdµ

= µ(Ω)−1

∫
Ω
ζ d ((∇φ)#µ) .

This proves that µ(Ω)µ(Ωεn)−1νεn converges weakly to ν̃ := (∇φ)#µ. Observe that
ν̃ must be absolutely continuous because the densities of the µ(Ω)µ(Ωεn)−1νεn are
bounded above uniformly in n (see (28)) and supported on the compact set Λ Therefore
ν̃ has a density g̃.

Define S := ∂φ (Sing(φ)). Then we claim that (∇φ∗)−1 (Sing(φ)) ∩ Diff(φ∗) = S ∩
Diff(φ∗), where Diff denotes the set of points of differentiability of its argument. Indeed,
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suppose that y ∈ LHS. Then ∇φ∗(y) ∈ Sing(φ). Now (just as in the proof of Lemma
35) y ∈ ∂φ (∇φ∗(y)), so y ∈ S.

Then suppose that y ∈ S∩Diff(φ∗). Then y ∈ ∂φ(x) for some x ∈ Sing(φ), implying

by Theorem 65 that x ∈ ∂φ∗(y), i.e., x = ∇φ∗(y), and y ∈ (∇φ∗)−1 (Sing(φ)). This
gives the claimed set equality.

Recall that the set of points of differentiability of a continuous function (e.g., φ
and φ∗) is Borel (and hence also is its complement), so Sing(φ), Sing(φ∗), and their
complements are Borel.

By Theorem 58, ∇φ∗ is continuous on Diff(φ∗). Define h to agree with ∇φ∗ on
Diff(φ∗) and to be identically equal to z0 on Sing(φ∗). Let U be open. If z0 /∈ U , then
h−1(U) is open in Diff(φ∗), i.e., h−1(U) = O ∩ Diff(φ∗) for some open O. If z0 ∈ U ,
then h−1(U) is the union of Sing(φ∗) with some set open in Diff(φ∗). In either case,
h−1(U) is Borel. Therefore h is a Borel-measurable function. Therefore h−1(Sing(φ)) is

Borel. Notice that h−1(Sing(φ)) = (∇φ∗)−1 (Sing(φ))∩Diff(φ∗), so in fact S ∩Diff(φ∗)
is Borel.

We compute:

ν̃(S ∩Diff(φ∗)) =

∫
χS∩Diff(φ∗) d ((∇φ)#µ)

=

∫
Ω
χS∩Diff(φ∗) ◦ ∇φdµ.

Notice that the integrand in the last expression is only nonzero on a Lebesgue-null set
(namely, Sing(φ)), so since µ is absolutely continuous, we have that ν̃(S∩Diff(φ∗)) = 0.
Therefore ν̃ = ν̃|(S∩Diff(φ∗))c = ν̃|T , where T := (S ∩Diff(φ∗))c.

Now T = Sc ∪ Sing(φ∗) = Sc ∪ E, where the union in the last expression is disjoint
and E ⊂ Sing(φ∗). Since E is contained within a set of Lebesgue-measure zero, E is
Lebesgue-measurable with measure zero, and hence Sc is Lebesgue-measurable as well.

By the absolute continuity of ν̃, for a.e. x ∈ Λ we can write

(35) g̃(x) = lim
R→0

ν̃(BR(x))

vol(BR(x))
.

Let α > 0 and let U be an open set containing T with m(U\T ) < α (where m
denotes the Lebesgue measure). This is of course possible because T is Borel. Then

(36) ν̃(BR(x)) = ν̃(BR(x) ∩ T ) ≤ ν̃(BR(x) ∩ U).

Now since BR(x) ∩ U is open, by weak convergence we have that

(37) ν̃(BR(x) ∩ U) ≤ lim inf
n→∞

µ(Ω)µ(Ωεn)−1νεn(BR(x) ∩ U)

for all R.
Observe that since U = T ∪ (U\T ), we have that

BR(x) ∩ U = (BR(x) ∩ T ) ∪ (BR(x) ∩ (U\T )) ⊂ (BR(x) ∩ T ) ∪ (U\T ),

so then (noting that by (28) there exists a constant C such that gε ≤ C for all ε) we
see that

νεn(BR(x) ∩ U) ≤ νεn(BR(x) ∩ T ) + νεn(U\T )
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≤
∫
BR(x)∩T

gεn + C ·m(U\T )

≤
∫
BR(x)∩Sc

gεn + Cα,

where in the last step we have used the fact that T = Sc ∪ E, where E has Lebesgue
measure zero, as well as (30). Now by Lemma 35, gεn → g a.e. on Sc, so by bounded
convergence (since the gε are uniformly bounded) the last expression is convergent and

(38) lim inf
n→∞

µ(Ω)µ(Ωεn)−1νεn(BR(x) ∩ U) ≤
∫
BR(x)∩Sc

g + Cα

Then by (36), (37), and (38), we have that

ν̃(BR(x)) ≤
∫
BR(x)∩Sc

g + Cα ≤
∫
BR(x)

g + Cα

for all α > 0, i.e.,

(39) ν̃(BR(x)) ≤
∫
BR(x)

g.

Then by (35) and (39), for a.e. x we have

g̃(x) ≤ lim inf
R→0

1

vol(BR(x))

∫
BR(x)

g = g(x).

Therefore g ≥ g̃ a.e., and consequently∫
Λ
|g − g̃| =

∫
Λ

(g − g̃)

=

∫
Λ
g −

∫
Λ
g̃

= ν(Λ)− ν̃(Λ).(40)

Notice that since ν̃ � m (the Lebesgue measure) and m(∂Λ) = 0, we have that ν̃(∂Λ) =
0, and Λ is a continuity set of ν̃. Therefore by the weak convergence µ(Ω)µ(Ωεn)−1νεn ⇒
ν̃, we see that

ν̃(Λ) = lim
n→∞

µ(Ω)µ(Ωεn)−1νεn(Λ) = µ(Ω) lim
n→∞

µ(Ωεn)−1µ|Ωεn
[
(∇φεn)−1 (Λ)

]
.

Now (∇φεn)−1 (Λ) ⊃ Ωεn , so µ|Ωεn
[
(∇φεn)−1 (Λ)

]
= µ (Ωεn), and ν̃(Λ) = µ(Ω). Of

course, µ(Ω) = ν(Λ), so by (40) we have that
∫

Λ |g − g̃| = 0. This implies that g = g̃
a.e., so ν = ν̃, and the lemma follows immediately. �

12.8. Concluding the proof via the stability of optimal transport. We are at
last in a position to outline the remainder of the proof of the main theorem. Using our
result from the preceding subsection, together with the stability of optimal transport,
we will show that the maps ∇φεn converge in a certain sense to ∇ϕ. (Though it
seems natural that the stability of optimal transport plays a role in this proof, it is
perhaps unexpected that we have employed the stability of optimal transport to obtain
convergence in ε (rather than in k). As mentioned earlier, we could not take the
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seemingly more direct route and needed to use mollifiers to obtain regularity.) Then it
is easy to show that the ∇φεn converge pointwise to ∇φ, and it follows after a short
argument that φ = ϕ.

Lemma 39. Let T := ∇ϕ be the unique optimal transport map from µ to ν. Then for
any β > 0, Tn := ∇φεn → T in probability with respect to µ|Ωβ (or more precisely, with
respect to the multiple of this measure with total mass one).

Proof. Now notice that Tn := ∇φεn is an optimal transport map from µ(Ωεn)−1µ|Ωεn to

µ(Ωεn)−1νεn (probability measures) for all n. This follows from the fact that φεn is con-
vex and Brenier’s theorem (Theorem 9). Also evidently µ(Ωεn)−1µεn converges weakly
to µ(Ω)−1µ. Then by the stability of optimal transport (more precisely, Theorem 3)

µ(Ωεn)−1µ|Ωεn [{x ∈ Ω : d (Tn(x), T (x)) ≥ α}]→ 0

for any α > 0, where T := ∇ϕ is the unique optimal transport map from µ to ν. Of
course this implies that

(41) µ|Ωεn [{x ∈ Ω : d (Tn(x), T (x)) ≥ α}]→ 0

for any α > 0. Let α, β > 0. Then for all n sufficiently large Ωβ ⊂ Ωεn ⊂ Ω, so

µ|Ωβ [{x ∈ Ωβ : d (Tn(x), T (x)) ≥ α}] = µ [Ωβ ∩ {x ∈ Ωβ : d (Tn(x), T (x)) ≥ α}]
≤ µ [Ωεn ∩ {x ∈ Ω : d (Tn(x), T (x)) ≥ α}]
= µ|Ωεn [{x ∈ Ω : d (Tn(x), T (x)) ≥ α}] ,

and of course the last expression approaches zero as n→∞ by (41), and the lemma is
proved. �

Lemma 40. Tn → ∇φ a.e. on Ω.

Proof. Note first that φεn → φ pointwise because φ is convex, hence continuous. Then
by Theorem 59, for any x ∈ Ω and α > 0, we have that for n sufficiently large ∂φεn(x) ⊂
∂φ(x) + Bα(0). Thus at a point x such that ∂φ is a singleton, we have ∇φεn(x) ⊂
∇φ(x) + Bα(0), i.e., |∇φ(x) − ∇φεn(x)| < α for n sufficiently large, i.e., ∇φεn(x) →
∇φ(x). Therefore since ∂φ is a singleton almost everywhere, we have Tn → ∇φ a.e., as
desired. �

Now we can finally conclude the proof of Theorem 14. We claim that φ = ϕ on
Ω. Let β > 0. Now Tn → T in probability on Ωβ with respect to µ by 39, so there
exists a subsequence nj such that Tnj → T µ-almost everywhere on Ωβ, hence a.e.
on Ωβ (because f is bounded away from zero). But Tn → ∇φ almost everywhere
on Ωβ, so we must have that T = ∇φ on Ωβ. Since

⋃
β>0 Ωβ = Ω, we have that

T = ∇φ on Ω, i.e., ∇ϕ = ∇φ a.e. Since ϕ ∈ C2,α(Ω) and φ is Lipschitz on Ω (because
convex functions are Lipschitz on compact domains (Theorem 52), both are absolutely
continuous. Therefore since φ(0) = ϕ(0), we have that φ = ϕ. This completes the
proof. �

Corollary 41. For any x ∈ Ω and ε > 0, there exists δ > 0 such that ∂φ(k)(y) ⊂
∂ϕ(x) +Bε(0) for all y ∈ Bδ(x) and all k sufficiently large.

Proof. This follows immediately from the preceding theorem together with Theorem
62. �
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13. Relationship of the DMAOP with discrete optimal transport

We now investigate the connection between the DMAOP and classical discrete op-
timal transport problems (DOTPs). In fact, the solution of the DMAOP gives the
solution to a corresponding DOTP. The key here is Rockafellar’s theorem.

Let {ψj , ηj}Nj=1 be a solution of the DMAOP (with notation as above). Then we can

repeat the construction described above to obtain a piecewise-linear convex function
φ : Rn → R such that φ(xj) = ψj and ∂φ(xj) 3 ηj . By Rockafellar’s theorem (Theorem

7),
⋃N
j=1(xj , ηj) is cyclically monotone, so xj 7→ ηj solves the discrete optimal transport

problem from µD =
∑N

j=1 δxj to νD =
∑N

j=1 δηj . We state this result as a proposition.

Proposition 42. Let {ψj , ηj}Nj=1 be a solution of the DMAOP. Then T : {xj} → {ηj}
given by xj 7→ ηj solves the Monge-Kantorovich problem with source µD =

∑N
j=1 δxj

and target νD =
∑N

j=1 δηj .

Of course, the target points ηj are not fixed before the optimization problem is
solved. Indeed we expect the results of solving the DMAOP to be better than the
results obtained by picking N target points in advance and then solving the resulting
DOTP. This expectation is based on the fact that the DMAOP, chooses target points
ηj in a way that attempts to achieve correct volume distortion.

14. Numerical experiments

14.1. Implementation details. Only three details of the implementation bear men-
tioning. First, we used DistMesh for the triangulation of Ω (see [30]). Second, we solved
each convex optimization problem using MOSEK (see [26]), called via the modeling
language YALMIP (see [23]). Third, our MATLAB program for solving the DMAOP
allows the user to hand-draw the support of the source measure, and several of the
following examples have source measures with hand-drawn support.

There is significant room for improvement in the efficiency of the implementation.
The most expensive inefficiency is that we do not call MOSEK directly. Nonetheless,
we are still able to solve the DMAOP over fine triangulations in an acceptable amount
of time. It seems that we actually run into problems with numerical stability before
the runtime of the algorithm on a standard computer becomes intolerable.

14.2. Examples. We will consider only examples in the plane. Furthermore, we will
always take the target measure ν to be the measure whose support is the unit ball
and having uniform density on its support. It is not difficult to consider other convex
target domains or to consider non-uniform log-concave densities (the most prominent
examples being Gaussian densities). However, the visualizations that follow are more
intuitive in the case that the target measure has uniform density on its support. Recall
that it is possible to solve the DMAOP even in situations where we have not guaranteed
convergence.

For our first example, consider the following triangulation of a convex polygonal
source domain Ω. The shading in the background represents the density of f , though
we understand that f ≡ 0 outside of Ω.
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There are 405 points in the triangulation, and the DMAOP took 49.3 seconds to solve
on a 2011 MacBook Pro. The following is a plot of the computed convex potential.

For every point x in the triangulation we can consider the interpolation Tt(x) :=
(1 − t)x + tT (x) for t ∈ [0, 1]. We visualize this interpolation at times t = 0, 1

3 ,
2
3 , 1.

This interpolation can be understood as the solution of a dynamical optimal transport
problem, though we will not discuss this fact further.



TWO VIEWS ON OPTIMAL TRANSPORT AND ITS NUMERICAL SOLUTION 37

Next we consider a source measure with uniform density on a non-convex support.
There are 340 points in the triangulation, and solving the DMAOP took 51.2 seconds.
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Lastly we consider an example in which the source measure has highly irregular sup-
port (with uniform density on its support). There are 359 points in the triangulation,
and solving the DMAOP took 58.9 seconds.

Notice that in the last two examples above, the inverse optimal maps are discontin-
uous. Nonetheless, we are able to approximate them by calculating the (continuous)
forward maps and then inverting. Our method is particularly effective for highlighting
the discontinuity sets of these inverse maps.

Part 3. Numerical optimal transport via linear elliptic PDE

We now present another method for solving optimal transport problems numeri-
cally. Much of the following will be largely formal (though we indicate the assumptions
that are made); making the following arguments fully rigorous is an ongoing project.
However, we find the arguments suggestive enough–and the associated numerical re-
sults compelling enough–to present them here. Even absent a proof that our numerical
method must work under certain conditions, it is possible for any given test case to
provide strong evidence that it is working (or not working).

Our method stems from answering the following natural question: as we take a
one-parameter variation of source and target densities, how does the associated convex
potential change? We will see that the ‘time’-derivative of the convex potential is in fact
(given sufficient regularity) the solution of a second-order linear elliptic PDE. Solving
many of these PDEs allows us to ‘flow’ the solution of one optimal transport problem



TWO VIEWS ON OPTIMAL TRANSPORT AND ITS NUMERICAL SOLUTION 39

to another. By choosing an ‘easy problem’ (with known solution) to begin with, we
can flow an easy solution to a hard one!

15. Derivation of the numerical method

15.1. Deriving a PDE for the time derivative of the convex potential. Suppose
that we know the optimal transport map, T0 = ∇φ0 from (Ω, µ0) to (Λ, ν0), where
µ0 and ν0 are given by Hölder -continuous densities f0 : Ω → R and g0 : Λ → R,
respectively, (both positive and bounded away from zero and infinity). Suppose that
we desire to know the optimal transport map from (Ω, µ) to (Λ, ν), where µ1 := µ
and ν1 := ν are given by densities f1 = f and g1 = g, respectively (also positive and
bounded away from zero and infinity). Define ft = (1−t)f0+tf1 and gt = (1−t)g0+tg1

for t ∈ [0, 1] (so ft and gt are both positive and bounded away from zero for all t). Let
Tt = ∇φt be the (unique) optimal transport map from (Ω, µt) to (Λ, νt) for all t ∈ [0, 1],
where the existence and uniqueness of such maps follow from Brenier’s theorem. Let
φ = φ1 and T = T1. If we assume that ∇φt is C1 (which, as we have seen, can
be guaranteed in problems of sufficient regularity), then the following Monge-Ampère
equation holds on Ω, for all t ∈ [0, 1]:

det∇2φt =
ft

gt ◦ ∇φt
,

or equivalently, since the RHS is positive,

log det∇2φt − log f + log(gt ◦ ∇φt) = 0.

Next we take the derivative with respect to t (assuming that φt is sufficiently smooth as
a function of both x and t). Recalling that for an invertible square matrix A depending
on u, ∂

∂u log detA = tr
(
A−1 ∂A

∂u

)
, we obtain:

tr

((
∇2φt

)−1
(
∂

∂t
∇2φt

))
− 1

ft

∂ft
∂t

+
1

gt ◦ ∇φt
·

(
∂gt
∂t
◦ ∇φt +

n∑
i=1

(
∂gt
∂xi
◦ ∇φt

)
· ∂

2φt
∂t∂xi

)
= 0.

Define H ij
t by (H ij

t ) =
(
∇2φt

)−1
, and let ηt = ∂

∂tφt, so then we have

n∑
i,j=1

H ij
t

∂ηt
∂xi

∂ηt
∂xj
− 1

ft

∂ft
∂t

+
1

gt ◦ ∇φt
·

(
∂gt
∂t
◦ ∇φt +

n∑
i=1

(
∂gt
∂xi
◦ ∇φt

)
· ∂ηt
∂xi

)
= 0

Let Dt be the differential operator given by

Dt =

n∑
i,j=1

H ij
t

∂

∂xi

∂

∂xj
+

1

gt ◦ ∇φt

n∑
i=1

(
∂gt
∂xi
◦ ∇φt

)
∂

∂xi
,

so our earlier equation is

Dtηt =
1

ft

∂ft
∂t
− 1

gt ◦ ∇φt
· ∂gt
∂t
◦ ∇φt.

By our definition of ft and gt, this is the same as

(42) Dtηt =
f1 − f0

ft
+
g0 − g1

gt
◦ ∇φt.
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Since (H ij) is the inverse of a positive definite matrix, (H ij) is positive definite, and it
follows that Dt is elliptic, and (42) is a second-order linear elliptic PDE.

15.2. Discussion and a preview of our numerical approach. Our above reasoning
immediately suggests (modulo the specification of boundary conditions for (42), which
we shall discuss below) a method for numerically solving the optimal transport problem
from (Ω, µ) to (Λ, ν). First we choose a time-step h. Then, given φt, we approximate
φt+h = φt + hηt, where ηt is the solution to (42). If we begin with knowledge of φ0,
then we can repeat the forward-stepping until we obtain an approximation for φ1.

In practice, how can we initialize f0 and g0 so that the associated convex potential
φ0 is known to us? If µ and ν have the same support, i.e., Ω = Λ, then we can simply
set f0 = g0 = 1

vol(Ω) on Ω = Λ, so φ0(x) = 1
2‖x‖

2 (and T0 = ∇φ0 = id).

In fact, we can (almost) do this even when Ω 6= Λ. We can take a domain D such
that Ω,Λ ⊂ D and set f0 = g0 = 1

vol(D)χD. Even though f = f1 and g = g1 may vanish

on D, for every t ∈ [0, 1) it is in fact true that ft and gt are bounded away from zero
on D. Of course, φt may become singular at t = 1, but for t < 1, φt is nice. As t→ 1,
the stability of optimal transport tells us that Tt should approach T = ∇φ in a certain
sense, so we should still be able to approximate solutions even in this case.

Note that alternatively, for ε > 0 we could take fε := (1 + ε · vol(D))−1 (f + ε · χD)

and gε := (1 + ε · vol(D))−1 (g + ε · χD) (both bounded away from zero on D) and then
use our forward-stepping scheme to find φε (solving the optimal transport problem
associated with fε and gε). Then by the stability of optimal transport we see that for
ε > 0 small, ∇φε approximates ∇φ in a certain sense.

In practice, we find that is is numerically easier to deal with a vanishing source
density than a vanishing target density, though the latter can be dealt with by the
methods just described. We also find that it is easier to deal with a singular source
density than a singular target density. This is intuitive: spacial derivatives of the target
density appear in the coefficients of the operator Dt, while spacial derivatives of ft do
not.

There is another way to obtain f0, g0, and φ0: we can leverage our previous method,
the DMAOP. To do so, we set f0 and g0 to be constant on Ω and Λ, respectively, and
vanishing everywhere else. If Ω and Λ are convex (or, more generally, if Λ is convex and
Ω is such that the associated convex potential φ0 is in C2,α(Ω)), then we can compute
φ0 by the DMAOP (note that g0 is quite trivially log-concave).

We will not pursue this approach here. We will instead follow the first approach, i.e.,
consider a domain D containing Ω and Λ. By scaling and translation, we can assume
without loss of generality that Ω and Λ are contained in [−1, 1]n. This is effectively the
same as assuming that Ω = Λ = [−1, 1]n with f and g not necessarily bounded away
from zero (and possibly vanishing) on Ω = Λ.

By solving our problem on a cube, we can easily employ finite difference techniques
for elliptic PDEs. Note that in order to consider an arbitrary domain D, or to follow
the approach that leverages the DMAOP, we could use finite element techniques on a
suitable triangulation of the domain in question.
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15.3. Deriving the boundary conditions. What boundary conditions do the ηt
satsify? Notice that if Ω and Λ are both convex, then Caffarelli’s regularity theory
gives that ∇φt and its inverse ∇φ∗t are in C0,α(Ω) and C0,α(Λ), respectively, so ∇φt is
a homeomorphism Ω → Λ, and hence ∇φt(∂Ω) = ∂Λ. Then for x ∈ ∂Ω, we have that
∇φt(x) ∈ ∂Λ for all t. Consequently, if ∂Ω and ∂Λ are smooth at x, then ∂

∂t∇φt(x)
must be tangent to ∂Λ at ∇φt(x), i.e.,

(43) 〈∇ηt(x), ν (∇φt(x))〉 = 0

for all x ∈ ∂Ω, where ν(y) is the outward-pointing normal vector to ∂Λ at y ∈ ∂Λ.
Notice that this yields a Neumann-like (though not precisely Neumann) boundary

condition for ηt. However, in the case that Ω = Λ = [−1, 1]n, this boundary condition
is in fact a Neumann boundary condition (on the interiors of the faces of [−1, 1]n).

Lemma 43. Let Ω = Λ = [−1, 1]n. Then ∇φt preserves the interiors of the faces of
[−1, 1]n.

Proof. Since ft and gt are bounded away from zero on [−1, 1]n, Caffarelli’s regularity
theory gives that φt ∈ C2,α(Ω) ∩ C1,α(Ω) and that φt is strictly convex on [−1, 1]n.
Suppose for contradiction that x and ∇φt(x) are in the interiors of two distinct faces
(F1 and F2, respectively) of [−1, 1]n.

There are two cases: either F1 and F2 are opposite faces, or they are not. In the
latter case, there is a vector v ∈ Rn which is parallel to F1 and perpendicular to F2.
By the continuity of ∇φt on Ω (and recalling that ∇φt(∂Ω) = ∂Λ), there exists δ > 0
such that ∇φt(B2δ(x) ∩ ∂Ω) ⊂ F2. Then we have that ∇φt(x), ∇φt(x + δv) ∈ F2, so
∇φt(x+ δv)−∇φt(x) is perpendicular to v, hence perpendicular to δv = (x+ δv)− x.
In other words, with y := x+ δv, we have shown that 〈y − x,∇φt(y)−∇φt(x)〉 = 0.

Now by the strict convexity of ∇φt on [−1, 1]n, we have that{
φt(y) > φt(x) + 〈y − x,∇φt(x)〉
φt(x) > φt(y) + 〈x− y,∇φt(y)〉 ,

i.e., {
0 > φt(x)− φt(y) + 〈y − x,∇φt(x)〉
0 > φt(y)− φt(x) + 〈y − x,−∇φt(y)〉 .

Adding these two inequalities, we obtain 〈y − x,∇φt(x)−∇φt(y)〉 < 0, a contradiction.
It remains to consider the case in which F1 and F2 are opposite. Let ek be the

standard unit vector that is perpendicular to both F1 and F2. Then 〈x, ek〉 = ±1, and
〈∇φt(x), ek〉 = ∓1.

Define γ by γ(t) = x + tek. Then by the strict convexity of φt,
∂φt
∂xk
◦ γ is strictly

increasing. Then for any t > 0, we have that

∂φt
∂xk

(x− tek) <
∂φt
∂xk

(x) = ∓1

and, similarly,
∂φt
∂xk

(x+ tek) >
∂φt
∂xk

(x) = ∓1.
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Thus if 〈x, ek〉 = 1, then ∂φt
∂xk

(y) < −1 for some y ∈ (−1, 1)n, and if 〈x, ek〉 = −1, then
∂φt
∂xk

(y) > 1 for some y ∈ (−1, 1)n. In either case, it follows that ∇φt(y) /∈ [−1, 1]n for

some y ∈ [−1, 1]n, giving a contradiction.
�

Then since ν is constant on the interior of eaach face of [−1, 1]n, our boundary
condition is that 〈∇ηt(x), ν (x)〉 = 0 for all x in the interiors of the faces of [−1, 1]n.
This is of course a Neumann boundary condition. For x in a face that is perpendicular
to ek, our boundary condition dictates that ∂ηt

∂xk
= 0.

Notice that instead of providing a boundary condition, we might choose to solve (42)
subject to the constraint that ∇(φt + hηt)(∂Ω) ⊂ Λ. Numerically, this would amount
to solving a linear system subject to convex inequality constraints. This can easily
be cast as a convex optimization problem that is feasible to solve. In the case that
Ω = Λ = [−1, 1]n, the constraints are actually affine, which makes the problem much
easier. However, it is still more desirable to solve (42) with boundary conditions because
this amounts to solving a single linear system, computationally much cheaper than
solving an inequality-constrained optimization problem. The computational savings
add up because we must solve (42) at each time step, and a small step size is necessary
for an accurate approximation of φ = φ1 and T = T1.

16. Details of the numerical scheme

We restrict our attention to the case n = 2 (though the generalization to arbitrary
dimension is clear) with Ω = Λ = [−1, 1]2. Then with the discussion from the preceding
section in mind, given φt we aim to solve

Dtηt(x) = f1(x)−f0(x)
ft(x) + g0(∇φt(x))−g1(∇φt(x))

gt(∇φt(x)) , x = (x1, x2) ∈ (−1, 1)2

∂
∂xi
ηt = 0, |xi| = 1

where

Dt =
2∑

i,j=1

H ij
t

∂

∂xi

∂

∂xj
+

1

gt ◦ ∇φt

2∑
i=1

(
∂gt
∂xi
◦ ∇φt

)
∂

∂xi

with H ij
t the (i, j)-th entry of

(
∇2φt

)−1
.

We use a finite difference scheme on [−1, 1]2. Fix a positive integer N . Let x(m,n) =(
−1 + 2m

N ,−1 + 2n
N

)
for m,n = 0, 1, . . . , N . The x(m,n) will be the grid points of our

finite difference scheme. Then we have a grid spacing of d = 2
N .

Furthermore, let M be a positive integer, and let tk = k
M for k = 0, . . . ,M . The tk

reflect our discretization of the time interval [0, 1]. Note that h = 1
M is our time step

size.
Inductively, fix k < M and suppose that we have φ

(m,n)
k for all m,n = 0, 1, . . . , N .

We understandφ
(m,n)
k as our approximation of φtk

(
x(m,n)

)
. Let Φk denote the matrix(

φ
(m,n)
k

)
. Then to completely specify our method, we need only specify how to compute

Φk+1 =
(
φ

(m,n)
k+1

)
.
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For a matrix Z = (ζ(m,n)) and for m,n = 1, . . . , N − 1, let

(∆1Z)(m,n) =
Z(m+1,n) − Z(m−1,n)

2h

(∆2Z)(m,n) =
Z(m,n+1) − Z(m,n−1)

2h

(∆11Z)(m,n) =
Z(m+1,n) + Z(m−1,n) − 2Z(m,n)

2h2
,

(∆22Z)(m,n) =
Z(m,n+1) + Z(m,n−1) − 2Z(m,n)

2h2
,

(∆12Z)(m,n) =
Z(m+1,n+1) + Z(m−1,n−1) − Z(m+1,n−1) − Z(m−1,n+1)

4h2
.

It is well-known that ∆i is the standard second-order finite difference operator corre-
sponding to ∂

∂xi
and that ∆ij is the standard second-order finite difference operator

corresponding to ∂2

∂xi∂xj
.

For m,n = 1, . . . , N − 1, let I
(m,n)
k be the matrix with (i, j)-th entry (∆ijΦk)

(m,n),

and let H
(m,n)
k =

(
I

(m,n)
k

)−1
. Then let H

ij;(m,n)
k be the (i, j)-th entry of H

(m,n)
k , and

let Hijk be the multiplication operator defined by

Hijk
(
Z(m,n)

)N−1

m,n=1
=
(
H
ij;(m,n)
k Z(m,n)

)N−1

m,n=1
.

Furthermore, for m,n = 1, . . . , N − 1, let

G
(m,n)
k =

[
(∆1Φk)

(m,n) , (∆2Φk)
(m,n)

]
,

and let

M
i;(m,n)
k =

(
gtk

(
G

(m,n)
k

))−1
· ∂gtk
∂xi

(
G

(m,n)
k

)
.

Then let Mi
k be the multiplication operator defined by

Mi
k

(
Z(m,n)

)N−1

m,n=1
=
(
M

i;(m,n)
k Z(m,n)

)N−1

m,n=1
.

Then define

Dk =

2∑
i,j=1

Hijk ∆ij +

2∑
i=1

Mi
k∆i.

We understand Dk as a discretization of the differential operator Dtk .
Next, for m,n = 1, . . . , N − 1, let

B
(m,n)
k =

f1 − f0

ftk

(
x(m,n)

)
+
g0 − g1

gtk

(
G

(m,n)
k

)
.

Then our discretized equation for ηk =
(
η

(m,n)
k

)N−1

m,n=1
, modulo the inclusion of bound-

ary conditions, is Dkηk = Bk.
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It remains to include boundary conditions in our linear system. For m,n = 0, . . . , N ,
let

(∆
(+)
1 Z)(n) =

3Z(N,n) − 4Z(N−1,n) + Z(N−2,n)

2h

(∆
(−)
1 Z)(n) =

−3Z(0,n) + 4Z(1,n) − Z(2,n)

2h

(∆
(+)
2 Z)(m) =

3Z(m,N) − 4Z(m,N−1) + Z(m,N−2)

2h

(∆
(−)
2 Z)(m) =

−3Z(m,0) + 4Z(m,1) − Z(m,2)

2h
.

∆
(+)
i simply takes the second-order backward finite difference approximation of ∂

∂xi

along the boundary {xi = 1}, while ∆
(−)
i takes the second-order forward finite difference

approximation of ∂
∂xi

along the boundary {xi = −1}.

Let ∆bd =
(

∆
(+)
1 ,∆

(−)
1 ,∆

(+)
2 ,∆

(−)
2

)T
. Then our discretized boundary condition is

∆bdηk = 0. Then our full linear system for ηk =
(
η

(m,n)
k

)N−1

m,n=1
is

Dkηk = Bk, ∆bdηk = 0.

Treating ηk as a vector in R(N+1)2 , there exists Ak ∈ R[(N+1)2+4(N+1)]×(N+1)2 , bk ∈
R(N+1)2+4(N+1) yielding an equivalent system

Akηk = bk.

Notice that Ak is quite sparse by construction.

We solve this system in the least-squares sense, i.e., we find ηk ∈ R(N+1)2 minimizing
‖Akηk − bk‖22. As is well-known, such a minimizer is obtained by solving the normal
equations: (

ATkAk
)
ηk = ATk bk.

The numerical solution of the normal equations can be conducted quite rapidly.
Let ηk solve the normal equations, and then consider ηk as a (N + 1) × (N + 1)

matrix. Then we set Φk+1 = Φk + hηk. We have now fully specified our numerical
scheme.

We note that when ΦM =
(
φ

(m,n)
M

)
is attained, we consider the φ

(m,n)
M to be the

approximate values of φ
(
x(m,n)

)
for m,n = 0, 1, . . . , N . Furthermore, we can use

the finite difference operators described above to compute T (m,n) ≈ ∇φ
(
x(m,n)

)
for

m,n = 0, 1, . . . , N .
Also, there is a simple procedure for obtaining the convex potential and optimal

transport map associate with the ‘inverse’ optimal transport problem with source ν
and target µ. Recall that the convex potential φ∗ solves the inverse problem. Now
when x∗ = ∇φ(x), we have that φ∗(x∗) = φ(x) − 〈x, x∗〉. Then we approximate φ∗ at

T (m,n) by φ
(m,n)
M −

〈
x(m,n), T (m,n)

〉
, and we approximate ∇φ∗ at T (m,n) by x(m,n). We

can obtain a value for φ∗ or ∇φ∗ anywhere by taking the Delaunay triangulation of the
points T (m,n) and employing barycentric interpolation.
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17. An account of theoretical debts and a program for their
fulfillment

We will outline some desired results that would be the main steps toward achieving
rigorous results pertaining to our numerical method. First, we desire a result that
guarantees (in some sense) the smoothness of the convex potential with respect to
perturbations of f and g. We expect that such a result exists, and since our variations
ft and gt are ‘nice’ in every imaginable sense, we conjecture with some optimism that
ηt = ∂

∂tφt indeed exists and that exchanging the spatial and time derivatives of φt as
done earlier is justified. If true, these facts would indicate that a solution to (42) with
boundary condition (43) exists.

Next we conjecture that such a solution is in fact unique. We hope that such a
result can be obtained from a modification of the standard technique (using the Hopf
boundary point lemma and strong maximum principle) for proving the uniqueness of
solutions of elliptic equations with Neumann boundary conditions.

Uniqueness is indeed important for our purposes because when we take a step using
our forward-stepping scheme, we want to be sure that the step is in the right direction!

We remark that for existence and uniqueness it may be easiest to assume that ∂Ω
and ∂Λ are smooth, but it would also be of interest to examine the case of the cube
[−1, 1]n in detail.

The last major theoretical step remaining would be to bound the error of our numer-
ical solution to (42) with boundary condition (43). The standard techniques used in the
numerical analysis of linear elliptic PDEs would be of use, but special attention must
be paid to the fact that the coefficients of the differential operator Dt actually change
with time. Even worse, these coefficients depend on φt, so we can only approximate
the coefficients using our approximation for φt. This fact adds significant intricacy to
the numerical analysis of our technique.

18. Numerical experiments

We present several numerical examples. Computation time for each example was
less than a minute.

We first consider the optimal map from the density pictured at left below to the
uniform density on the square. The lines in the image at right are the image of a grid
on the square under the forward optimal map. The lines in the image at left are the
image of a grid on the square under the inverse optimal map.
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The following two images should be interpreted in the same way as the preceding
two.

We let the source density be the famous ‘mandrill image’ and compute the optimal
transport map to the uniform density. Then we take the image of grid points under
the inverse map to obtain a stippled depiction of the mandrill (when viewing on a
computer, zoom in sufficiently to prevent aliasing!).
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Appendices: Definitions and results from convex analysis

Convex analysis plays a significant role in the theory of optimal transport, perhaps
most clearly in the case of the quadratic cost in Euclidean space. We review here
several definitions and results from convex analysis that are useful in our exposition
as well as in optimal transport more broadly. Much (but not all) of the following is
adapted from Rockafellar [33].

A. Convex sets and functions

Definition 44. A set C ⊂ Rn is convex if (1− t)x+ ty ∈ C for every x, y ∈ C and all
t ∈ [0, 1].

Definition 45. Let S ⊂ Rn, and let f : S → [−∞,∞]. The epigraph of f is the set

{(x, u) ∈ S × R |u ≥ f(x)} ,

which we denote by epi f . We say that f is a convex function on S if epi f ⊂ Rn+1 is
convex. When we say that f is convex, we take this to mean that f is convex on Rn.
The effective domain of a convex function f on S, denoted dom f , is the set

dom f = {x ∈ S | ∃u ∈ R, (x, u) ∈ epi f} = {x ∈ S : f(x) < +∞}.

The following is an immediate consequence of the preceding definitions:

Lemma 46. Let f be convex on S ⊂ Rn. Then dom f is convex.

The following theorem relates our epigraphical definition of convex functions with a
more commonly used, and perhaps more familiar, definition:

Theorem 47. Let C ⊂ Rn be a convex set (e.g., C = Rn). f : C → (−∞,+∞] is
convex on C if and only if f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) for all x, y ∈ C and
t ∈ [0, 1].

Proof. Evidently f is convex on C if and only if (1− t)(x, u) + t(y, v) ∈ epi f (equiva-
lently, ((1− t)x+ ty, (1− t)u+ tv) ∈ epi f) whenever (x, u), (y, v) ∈ epi f and t ∈ [0, 1].
Thus f is convex on C if and only if f ((1− t)x+ ty) ≤ (1 − t)u + tv whenever
(x, u), (y, v) ∈ epi f and t ∈ [0, 1].

If x, y ∈ C with f(x), f(y) < +∞, then (x, f(x)), (y, f(y)) ∈ epi f (since f(x), f(y) >
−∞). Thus if f is convex on C, then f ((1− t)x+ ty) ≤ (1 − t)f(x) + tf(y) for all
x, y ∈ dom f . But this inequality also holds trivially when x /∈ dom f or y /∈ dom f , so
the ‘only if’ direction holds.

Now whenever (x, u), (y, v) ∈ epi f , it follows that f(x) ≤ u and f(y) ≤ v. Then if
we assume that f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) for all x, y ∈ C and t ∈ [0, 1], we
also have that f ((1− t)x+ ty) ≤ (1− t)u+ tv for all (x, u), (y, v) ∈ epi f and t ∈ [0, 1],
and the ‘if’ direction holds. �

We note that this theorem provides an alternative definition of convexity for functions
that do not take the value −∞. We will in fact only need to consider such functions.

We note that when f ∈ C2(C), our definition of convexity coincides with the defini-
tion one might learn in multivariate calculus:
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Theorem 48. Let f ∈ C2(C), where C ⊂ Rn is open and convex. Then f is convex
on C if and only if the Hessian matrix ∇2f(x) is positive semi-definite for all x ∈ C.

Proof. See Theorem 4.5 of Rockafellar [33]. �

Notice that for f convex on a convex set C ⊂ Rn, we can extend to f̃ to Rn by
defining f̃ |Rn\C ≡ +∞. It is clear that epi f = epi f̃ , so f̃ is convex on Rn. Thus we
lose no generality by considering only functions that are convex on Rn.

The following definitions are helpful for ruling out pathologies:

Definition 49. A convex function f is called proper if dom f 6= ∅ and f(x) > −∞ for
all x.

We will only ever need to consider proper convex functions.

Definition 50. A proper convex function f is closed if epi f is closed. A non-proper
convex function f is closed if either f ≡ +∞ or f ≡ −∞.

Proposition 51. If f is a proper convex function, then f is closed if and only if it is
lower semi-continuous.

Proof. First recall that a function g is lower semi-continuous (lsc) if and only if {x :
g(x) > α} is open for all α ∈ R, or equivalently, if and only if {y : g(y) ≤ α} is
closed for all α ∈ R. Suppose that f is a proper convex function. Now let xk ∈ Rn
be a sequence with f(xk) ≤ α for some α ∈ R and with xk → x for some x ∈ Rn.
Notice that (xk, α) ∈ epi f for all k. Since f is closed, epi f is closed, and therefore
(x, α) ∈ epi f , i.e., f(x) ≤ α. Thus {y : f(y) ≤ α} is closed, and f is lsc.

Conversely, suppose that f is lsc, so {y : f(y) ≤ β} is closed for all β ∈ R. Let
(xk, αk) ∈ epi f (so f(xk) ≤ αk) with xk → x and αk → α. Let δ > 0. Then for all
k sufficiently large, αk ≤ α + δ, so f(xk) ≤ α + δ, i.e., xk ∈ {y : f(y) ≤ α+ δ} for all
k sufficiently large. Then by the closure of this set, we have that f(x) ≤ α + δ. Since
δ > 0 was arbitrary, in fact we have that f(x) ≤ α, and (x, α) ∈ epi f . �

The convexity of a function guarantees its continuity in a certain sense:

Theorem 52. A convex function f on Rn is continuous relative to any relatively open
convex set in dom f . In particular, f is continuous on int dom f . In fact, it holds that
a proper convex function f is locally Lipschitz on int dom f .

Proof. See Theorems 10.1 and 10.4 of Rockafellar [33]. �

B. First-order properties of convex functions

There is an extension of the notion of differentiability that is fundamental to the
analysis of convex functions.

Definition 53. Let f be a convex function on Rn. x∗ ∈ Rn is called a subgradient
of f at x if f(z) ≥ f(x) + 〈x∗, z − x〉 for all z ∈ Rn. The subdifferential of f at x,
denoted ∂f(x), is the set of all subgradients of f at x.

Theorem 54. Let f be a proper convex function. ∂f(x) is a non-empty bounded set
if and only if x ∈ int dom f .
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Proof. See Theorem 23.4 of Rockafellar [33]. �

Using this theorem, we can prove the following famous inequality.

Theorem 55. (Jensen’s inequality.) Let f be a proper convex function on Rn, and
let µ be a probability measure. Suppose that g : Rm → Rn is µ-measurable and that
suppµ ⊂ g−1 (int dom f). Then

∫
f ◦ g dµ ≥ f

(∫
g dµ

)
.

Proof. Let y =
∫
g dµ. Now for all x ∈ suppµ, g(x) ∈ int dom f . The reader can easily

verify that the interior of convex set is convex, so int dom f is convex. It then follows
(omitting some details) that the convex combination y =

∫
g dµ ∈ int dom f .

Now by the preceding theorem, ∂f(y) is nonempty, so we let y∗ ∈ ∂f(y). Then there
exists b ∈ R such that f(x) ≥ 〈y∗, x〉+ b for all x and f(y) = 〈y∗, y〉+ b. In particular,
it holds that f (g(x)) ≥ 〈y∗, g(x)〉+ b for all x ∈ dom f . Then since µ is supported on
dom f , we have that∫

f ◦ g dµ ≥
∫

(〈y∗, g(x)〉+ b) dµ(x) =

〈
y∗,

∫
g dµ

〉
+ b

∫
dµ = 〈y∗, y〉+ b = f(y),

as desired. �

It is perhaps no surprise that the derivative and the subdifferential of a convex
function coincide wherever it is differentiable.

Theorem 56. Let f be a convex function, and let x ∈ Rn such that f(x) is finite. If
f is differentiable at x, then ∇f(x) is the unique subgradient of f at x. Conversely, if
f has a unique subgradient at x, then f is differentiable at x.

Proof. See Theorem 25.1 of Rockafellar [33]. �

It is an important fact that proper convex functions are differentiable almost every-
where:

Theorem 57. Let f be a proper convex function on Rn, and let D be the set of points
where f is differentiable. Then D is a dense subset of int dom f , and int dom f\D has
measure zero. Furthermore, the gradient map ∇f given by x 7→ ∇f(x) is continuous
on D.

Proof. See Theorem 25.5 of Rockafellar [33]. �

In fact, the subgradients of a proper convex function enjoy a kind of continuity.

Theorem 58. If f is a proper convex function on Rn, x ∈ int dom f , and ε > 0, then
there exists δ > 0 such that

∂f(z) ⊂ ∂f(x) + εB

for all z ∈ Bδ(x).

Proof. See Corollary 24.5.1 of Rockafellar [33]. �
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C. Convergence of subgradients

Pointwise convergence of convex functions entails a kind of convergence of their
subgradients.

Theorem 59. Let f be a convex function on Rn, and let C be an open convex set
on which f is finite. Let f1, f2, . . . be a sequence of convex functions finite on C and
converging pointwise to f on C. Let x ∈ C, and let x1, x2, . . . be a sequence of points
in C converging to x. Then for any ε > 0, there exists N such that

∂fi(xi) ⊂ ∂f(x) +Bε(0)

for all i ≥ N .

Proof. See Theorem 24.5 of Rockafellar [33]. �

There is in fact a strengthening of this result that will be crucial for us. In order to
state the result, we need to define the notion of epigraphical convergence.

Definition 60. Let fi be a sequence of functions on Rn. Then the lower epi-limit
e lim infi fi is the function having as its epigraph lim supi (epi fi) (the outer limit of the
sets epi fi).

The upper epi-limit e lim supi fi is the function having as its epigraph lim infi (epi fi)
(the inner limit of the sets epi fi).

When e lim infi fi = e lim supi fi, we call this function the epi-limit function e limi fi,
and we say that the fi epi-converge to e limi fi. Therefore we have that the fi epi-
converge to f if and only if epi fi → epi f (in the sense of set convergence).

There is a useful theorem that relates pointwise convergence and epi-convergence of
convex functions.

Theorem 61. Let fi be a sequence of convex functions on Rn, and let f be a convex
lower semi-continuous function on Rn such that dom f has non-empty interior. Then
f = e limi fi if and only if the fi converge uniformly on every compact set C that does
not contain a boundary point of dom f .

Proof. See Theorem 7.17 of Rockafellar and Wets [34]. �

Now we have the following sort of ‘locally uniform’ convergence of the subgradients.

Theorem 62. Let f , fi be lower semi-continuous convex functions such that the fi
epi-converge to f . Let x ∈ int dom f . Then for all ε > 0, there exist δ > 0 and N such
that

∂fi(z) ⊂ ∂f(x) +Bε(0)

for all z ∈ Bδ(x) and all i ≥ N .

Proof. See Theorem 8.3 of Bagh and Wets [2]. �
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D. The convex conjugate

Definition 63. Let f be a function Rn → [−∞,+∞]. Then the convex conjugate (or,
Legendre-Fenchel transform) f∗ : Rn → [−∞,+∞] is defined by

f∗(x∗) = sup
x
{〈x, x∗〉 − f(x)} = − inf

x
{f(x)− 〈x, x∗〉} .

Theorem 64. Let f be a convex function. Then f∗ is a closed convex function, proper
if and only if f is proper. Furthermore, if f is closed, then f∗∗ = f.

Proof. See Theorem 12.2 of Rockafellar [33]. �

It is an important fact that the subgradients of f and f∗ are, in a sense, inverse
mappings.

Theorem 65. If f is a closed proper convex function, then x ∈ ∂f∗(x∗) if and only if
x∗ ∈ ∂f(x).

Proof. See Corollary 23.5.1 of Rockafellar [33]. �

Under certain mild conditions, the epi-convergence of a sequence of convex func-
tions is equivalent to the epi-convergence of the corresponding sequence of conjugate
functions.

Theorem 66. Let fi and f be proper lower semi-continuous convex functions on Rn.
Then the fi epi-converge to f if and only if the f∗i epi-converge to f∗.

Proof. See Theorem 11.34 of Rockafellar and Wets [34]. �
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