Spectral Methods for Neural Computation

Michael Lindsey
Boahen Lab Meeting
January 28, 2014
1. Outline

- What kinds of functions can be computed effectively with neurons?
1. **Outline**

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
1. Outline

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
1. Outline

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
1. Outline

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
- Practical suggestions for neuromorphic engineering
1. Outline

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
- Practical suggestions for neuromorphic engineering
- (Analogous method for computing polynomials)
1. Outline

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
- Practical suggestions for neuromorphic engineering
- (Analogous method for computing polynomials)
- (Application: numerical integration)
2. A Motivating Empirical Result

‘Hinge’ tuning curves

‘Polynomial’ basis
2. A Motivating Empirical Result

'Gaussian' tuning curves

'Fourier' basis
3. A Shot in the Dark

- Try adding up translated (±) Gaussian functions with extrema aligned with local extrema of sinusoid
3. A Shot in the Dark

- Try adding up translated (±) Gaussian functions with extrema aligned with local extrema of sinusoid

- Surprising result! But it’s no accident...
4. The Fourier transform

- FT (\mathcal{F}): $\hat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x) e^{-ix\omega} dx$
4. The Fourier transform

- FT (\mathcal{F}): $\hat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega} \, dx$

- Inverse FT (\mathcal{F}^{-1}): $f(x) = \mathcal{F}^{-1}(\hat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega)e^{ix\omega} \, d\omega$
4. The Fourier transform

- FT (\mathcal{F}): $\hat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT (\mathcal{F}^{-1}): $f(x) = \mathcal{F}^{-1}(\hat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega)e^{ix\omega}d\omega$

- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators
4. The Fourier Transform

- FT (\mathcal{F}): $\hat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT (\mathcal{F}^{-1}): $f(x) = \mathcal{F}^{-1}(\hat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega)e^{ix\omega}d\omega$

- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators

- Property 2 (translation): If $f_T(x) = f(x - T)$, then $\hat{f}_T(\omega) = e^{-i\omega T}\hat{f}(\omega)$
4. The Fourier transform

- FT (\mathcal{F}): $\hat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x) e^{-ix\omega} \, dx$

- Inverse FT (\mathcal{F}^{-1}): $f(x) = \mathcal{F}^{-1}(\hat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega) e^{ix\omega} \, d\omega$

- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators

- Property 2 (translation): If $f_T(x) = f(x - T)$, then $\hat{f_T}(\omega) = e^{-i\omega T} \hat{f}(\omega)$

- We say that a function f is Schwartz if f is smooth (infinitely differentiable) and if f and all of its derivatives decay faster than any polynomial (e.g., the Gaussian function, any smooth function of compact support)
4. The Fourier Transform

- FT (\mathcal{F}): \(\hat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx \)

- Inverse FT (\mathcal{F}^{-1}): \(f(x) = \mathcal{F}^{-1}(\hat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega)e^{ix\omega}d\omega \)

- Property 1: \(\mathcal{F} \) and \(\mathcal{F}^{-1} \) are linear operators

- Property 2 (translation): If \(f_T(x) = f(x - T) \), then \(\hat{f}_T(\omega) = e^{-i\omega T} \hat{f}(\omega) \)

- We say that a function \(f \) is Schwartz if \(f \) is smooth (infinitely differentiable) and if \(f \) and all of its derivatives decay faster than any polynomial (e.g., the Gaussian function, any smooth function of compact support)

- Property 3: \(\mathcal{F} \) and \(\mathcal{F}^{-1} \) map Schwartz functions to Schwartz functions (in fact, FT of Gaussian is Gaussian)
- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain
(also, decay in spatial domain \leftrightarrow smoothness in frequency domain)
- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain (also, decay in spatial domain \leftrightarrow smoothness in frequency domain)

- Notionally: lack of smoothness (box function) \leftrightarrow slow decay (sinc function)
- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain (also, decay in spatial domain \leftrightarrow smoothness in frequency domain)

- Notionally: lack of smoothness (box function) \leftrightarrow slow decay (sinc function)
- Notionally: smoothness in spatial domain ↔ decay in frequency domain (also, decay in spatial domain ↔ smoothness in frequency domain)

- Notionally: lack of smoothness (box function) ↔ slow decay (sinc function)

Property 4 (scaling): If \(f_a(x) = f\left(\frac{x}{a}\right) \), then \(\hat{f}_a(\omega) = |a| \hat{f}(a\omega) \)
5. Precise Statement for Constructing Sinusoids

- Let g be a Schwartz function. Let $x_{k}^{(+)} = 1 + 4k$, $x_{k}^{(-)} = -1 + 4k$. Let $g_{k}^{(+)}(x) = g(x - x_{k}^{(+)}))$ and $g_{k}^{(-)}(x) = g(x - x_{k}^{(-)})$
5. Precise Statement for Constructing Sinusoids

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)\ast}(x) = g(x - x_k^{(+)\ast})$ and $g_k^{(-)\ast}(x) = g(x - x_k^{(-)\ast})$

- Let $f_N = \left(g_0^{(+)} - g_0^{(-)} \right) + \sum_{k=1}^{N} \left(g_k^{(+)\ast} - g_k^{(-)\ast} + g_{-k}^{(+)} - g_{-k}^{(-)} \right)$
5. Precise Statement for Constructing Sinusoids

- Let \(g \) be a Schwartz function. Let \(x_k^{(+)} = 1 + 4k \), \(x_k^{(-)} = -1 + 4k \). Let \(g_k^{(+)}(x) = g(x - x_k^{(+)}) \) and \(g_k^{(-)}(x) = g(x - x_k^{(-)}) \)

- Let \(f_N = \left(g_0^{(+)} - g_0^{(-)} \right) + \sum_{k=1}^{N} \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)} \right) \)

- Then for all \(x \in \mathbb{R} \), as \(N \to \infty \),

\[
 f_N(x) \to \sum_{k=0}^{\infty} (-1)^k \left[a_k \sin \left(\left(\frac{\pi}{2} + k\pi \right) x \right) - b_k \cos \left(\left(\frac{\pi}{2} + k\pi \right) x \right) \right]
\]
5. Precise Statement for Constructing Sinusoids

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)}(x) = g(x - x_k^{(+)})$ and $g_k^{(-)}(x) = g(x - x_k^{(-)})$

- Let $f_N = \left(g_0^{(+)} - g_0^{(-)} \right) + \sum_{k=1}^{N} \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)} \right)$

- Then for all $x \in \mathbb{R}$, as $N \to \infty$,

\[
 f_N(x) \to \sum_{k=0}^{\infty} (-1)^k \left[a_k \sin \left(\left(\frac{\pi}{2} + k\pi \right) x \right) - b_k \cos \left(\left(\frac{\pi}{2} + k\pi \right) x \right) \right] \\
 = a_0 \sin \left(\frac{\pi}{2} x \right) - b_0 \cos \left(\frac{\pi}{2} x \right) + \ldots
\]
5. Precise Statement for Constructing Sinusoids

- Let \(g \) be a Schwartz function. Let \(x_k^{(+)} = 1 + 4k, \ x_k^{(-)} = -1 + 4k \). Let \(g_k^{(+)}(x) = g(x - x_k^{(+)}) \) and \(g_k^{(-)}(x) = g(x - x_k^{(-)}) \).

- Let \(f_N = \left(g_0^{(+)} - g_0^{(-)} \right) + \sum_{k=1}^{N} \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)} \right) \).

- Then for all \(x \in \mathbb{R} \), as \(N \to \infty \),

\[
f_N(x) \to \sum_{k=0}^{\infty} (-1)^k \left[a_k \sin \left(\left(\frac{\pi}{2} + k\pi \right) x \right) - b_k \cos \left(\left(\frac{\pi}{2} + k\pi \right) x \right) \right] = a_0 \sin \left(\frac{\pi}{2} x \right) - b_0 \cos \left(\frac{\pi}{2} x \right) + \ldots
\]

where \(a_k = \Re \left(\hat{g} \left(\frac{\pi}{2} + k\pi \right) \right) \), \(b_k = \Im \left(\hat{g} \left(\frac{\pi}{2} + k\pi \right) \right) \) for all \(k \).
6. A Surprising Consequence

- We do not require that the tuning curve \(g \) have a single local extremum
- Since \(g \) is Schwartz, \(\hat{g} \) is also Schwartz, so by a sufficiently large horizontal scaling of \(g \), we can get \(a_0 \gg a_k \) for all \(k \geq 1 \).
- Since g is Schwartz, \hat{g} is also Schwartz, so by a sufficiently large horizontal scaling of g, we can get $a_0 \gg a_k$ for all $k \geq 1$.

- In this case, $f_N(x) \approx a_0 \sin \left(\frac{\pi}{2} x \right)$ for N large enough.
- Since g is Schwartz, \hat{g} is also Schwartz, so by a sufficiently large horizontal scaling of g, we can get $a_0 \gg a_k$ for all $k \geq 1$

- In this case, $f_N(x) \approx a_0 \sin\left(\frac{\pi}{2}x\right)$ for N large enough.

- Can extend to the case where g is continuous and decays faster than x^{-1} (proof expresses g as a limit of Schwartz functions)
- Since \(g \) is Schwartz, \(\hat{g} \) is also Schwartz, so by a sufficiently large horizontal scaling of \(g \), we can get \(a_0 \gg a_k \) for all \(k \geq 1 \).

- In this case, \(f_N(x) \approx a_0 \sin \left(\frac{\pi}{2} x \right) \) for \(N \) large enough.

- Can extend to the case where \(g \) is continuous and decays faster than \(x^{-1} \) (proof expresses \(g \) as a limit of Schwartz functions).

- However, cannot guarantee that \(a_0 \gg a_k \) for all \(k \geq 1 \). How to guarantee rapidly decaying Fourier transform?
7. **Mollifying Pathological Tuning Curves**

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support
7. **Mollifying Pathological Tuning Curves**

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support.

- This is like replacing the value of the function at each point with a smooth weighted average of the values at its neighboring points.
7. **Mollifying Pathological Tuning Curves**

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support.

- This is like replacing the value of the function at each point with a smooth weighted average of the values at its neighboring points.

- For example, take mollifier, \(\varphi(x) = e^{\frac{-1}{1-|x|^2}} \mathbb{I}_{|x|<1} \)
7. Mollifying Pathological Tuning Curves

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support.

- This is like replacing the value of the function at each point with a smooth weighted average of the values at its neighboring points.

- For example, take mollifier, \(\varphi(x) = e^{\frac{-1}{1-|x|^2}} I_{|x|<1} \)

- A discrete mollification can be carried out by a simple neural network:

\[
\tilde{f}(x) = \left(\sum_{j=-n+1}^{n-1} \varphi \left(\frac{i}{n} \right) \right)^{-1} \sum_{j=-n+1}^{n-1} \varphi \left(\frac{i}{n} \right) f(x - j\delta)
\]
\[F(x) = w_0 f(x) + w_1 f(x + \delta) + w_2 f(x + 2\delta) \]

\[f(x) = f(x - 2\delta) + w_{-1} f(x - \delta) + w_{-2} f(x) \]

\[f(x) = f(x + \delta) + w_{+1} f(x + 2\delta) + w_{+2} f(x + 3\delta) \]
- We demonstrate this strategy on a nasty tuning curve (hat function)
- We demonstrate this strategy on a nasty tuning curve (hat function).

Mollified hat functions obtained from above procedure (with $\delta = 0.1$)

Approximation using no mollification (left), mollification with $\delta = 0.3$, $n = 4$ (right)
Approximation using no mollification (left), mollification with $\delta = 0.3$, $n = 4$ (right)

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^2 error</td>
<td>1.3×10^{-3}</td>
<td>6.7×10^{-5}</td>
<td>2.9×10^{-5}</td>
</tr>
<tr>
<td>L^∞ error</td>
<td>0.0912</td>
<td>0.0065</td>
<td>0.0024</td>
</tr>
</tbody>
</table>

So to approximate one period of a sinusoid, we require about 14 hat-shaped tuning curves (as opposed to 2 Gaussian tuning curves)
- We know that this strategy will work in general because of the...
- We know that this strategy will work in general because of the...

Convolution theorem:
\[\mathcal{F}(f * g) = \mathcal{F}(f) \mathcal{F}(g) \]
- We know that this strategy will work in general because of the...

Convolution theorem:

\[\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g) \]

- Since a mollifier \(\varphi \) is Schwartz, \(\mathcal{F}(\varphi) \) is Schwartz, and convolution with \(\varphi \) multiplies the frequency spectrum of our tuning curve by a rapidly decaying function.
- We know that this strategy will work in general because of the...

Convolution theorem:

\[\mathcal{F}(f \ast g) = \mathcal{F}(f)\mathcal{F}(g) \]

- Since a mollifier \(\varphi \) is Schwartz, \(\mathcal{F}(\varphi) \) is Schwartz, and convolution with \(\varphi \) multiplies the frequency spectrum of our tuning curve by a rapidly decaying function.

- For a sufficiently wide mollifier, \(\mathcal{F}(\varphi) \) is localized enough to make our approximation hold with negligible error.
- We know that this strategy will work in general because of the...

Convolution theorem:
\[\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g) \]

- Since a mollifier \(\varphi \) is Schwartz, \(\mathcal{F}(\varphi) \) is Schwartz, and convolution with \(\varphi \) multiplies the frequency spectrum of our tuning curve by a rapidly decaying function

- For a sufficiently wide mollifier, \(\mathcal{F}(\varphi) \) is localized enough to make our approximation hold with negligible error

- We may need to choose sample spacing \(\delta \) smaller for more irregular tuning curve shapes
8. What is the Optimal Tuning Curve?
8. What is the Optimal Tuning Curve?

- We want a tuning curve which is as localized as possible in both spatial and frequency domains.
8. **What is the Optimal Tuning Curve?**

- We want a tuning curve which is as localized as possible in both spatial and frequency domains

- We can actually suggest an answer in a certain sense
8. **What is the Optimal Tuning Curve?**

- We want a tuning curve which is as localized as possible in both spatial and frequency domains.

- We can actually suggest an answer in a certain sense (the Gaussian).
8. What is the Optimal Tuning Curve?

- We want a tuning curve which is as localized as possible in both spatial and frequency domains

- We can actually suggest an answer in a certain sense (the Gaussian)

- For \(f \in L^2(\mathbb{R}) \), let \(P(t) = \frac{|f(t)|^2}{\|f\|_2^2} \) (so \(P \) is a pdf), and

\[
\sigma^2(f) := \inf_{t_0} \int_{\mathbb{R}} (t - t_0)^2 P(t) dt,
\]

so \(\sigma(f) \) is the standard deviation of an RV with density \(P \), \(\frac{1}{\sigma(f)} \) measures the localization of \(f \)
8. What is the Optimal Tuning Curve?

- We want a tuning curve which is as localized as possible in both spatial and frequency domains.

- We can actually suggest an answer in a certain sense (the Gaussian).

- For $f \in L^2(\mathbb{R})$, let $P(t) = \frac{|f(t)|^2}{\|f\|_2^2}$ (so P is a pdf), and

$$\sigma^2(f) := \inf_{t_0} \int_{\mathbb{R}} (t - t_0)^2 P(t) dt,$$

so $\sigma(f)$ is the standard deviation of an RV with density P, $\frac{1}{\sigma(f)}$ measures the localization of f.

Weyl-Heisenberg Uncertainty Principle:

$$\sigma(f)\sigma(\widehat{f}) \geq \frac{1}{2},$$

with equality if and only if f is a Gaussian.
Review

• We can build sinusoids from smooth, rapidly decaying tuning curves
• It’s okay if the tuning curves have many peaks
• ...but Gaussians are the best
• We can deal with non-smooth tuning curves
• Network structure itself encodes computation
• Robust to modification of tuning curve
• Sinusoids as basis
APPLICATION: STATISTICAL INFERENCE

- Take $g(x) = (2x^2 + 0.5)e^{-(x-0.32)^2}$
APPLICATION: STATISTICAL INFEERENCE

- Take \(g(x) = (2x^2 + 0.5)e^{-(x-0.32)^2} \)

- We approximate the \(p \)-th moment of \(g \) by
 \[
 \sum_{n=-3}^{3} n^p g(n) \quad \sum_{n=-3}^{3} n^p g(n) \quad \int_{\infty}^{\infty} u^p g(u) du
 \]
APPLICATION: STATISTICAL INFERENCE

- Take \(g(x) = (2x^2 + 0.5)e^{-(x-0.32)^2} \)

- We approximate the \(p \)-th moment of \(g \) by
 \[
 \sum_{n=-3}^{3} n^p g(n) = \int_{-\infty}^{\infty} u^p g(u) du
 \]

\[
\begin{array}{|c|c|c|}
\hline
p = 0 & 3.02 & 3.02 \\
p = 1 & 2.11 & 2.10 \\
p = 2 & 4.32 & 4.32 \\
p = 3 & 5.24 & 5.30 \\
\hline
\end{array}
\]
9. Approximating Polynomials
9. Approximating Polynomials

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$.
9. Approximating Polynomials

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^{N} n^p g_n,$$

where p is a non-negative even integer.
9. Approximating Polynomials

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^{N} n^p g_n,$$

where p is a non-negative even integer. Then for all $x \in \mathbb{R}$,

$$f_N(x) \rightarrow \sum_{n=0}^{p} c_n(x)x^n$$

as $N \rightarrow \infty$.
9. Approximating Polynomials

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^{N} n^p g_n,$$

where p is a non-negative even integer. Then for all $x \in \mathbb{R}$,

$$f_N(x) \to \sum_{n=0}^{p} c_n(x) x^n$$

as $N \to \infty$, where

$$c_n(x) = i^{n-p} \binom{p}{n} \sum_{k \in \mathbb{Z}} \hat{g}^{(p-n)}(2\pi k) e^{2\pi ikx}.$$
9. Approximating Polynomials

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^{N} n^p g_n,$$

where p is a non-negative even integer. Then for all $x \in \mathbb{R}$,

$$f_N(x) \to \sum_{n=0}^{p} c_n(x)x^n$$

as $N \to \infty$, where

$$c_n(x) = i^{n-p} \binom{p}{n} \sum_{k \in \mathbb{Z}} \hat{g}^{(p-n)}(2\pi k)e^{2\pi ikx}.$$

In particular, by modifying g with an appropriate horizontal scaling if necessary, we obtain the approximation (for large enough N) $f_N(x) \approx \sum_{n=0}^{p} c_n x^n$, where $c_n = \int u^{p-n} g(u)du$, so c_n are constants and f_N is approximately a polynomial.
APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n
APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n

- Generally these functions are products of functions $q_i, \sin(q_i), \cos(q_i)$
APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions \(q_0, \ldots, q_n \)

- Generally these functions are products of functions \(q_i, \sin(q_i), \cos(q_i) \)

- Note that since we can square things, we can multiply things, due to the fact that \(xy = \frac{1}{2}((x + y)^2 - x^2 - y^2) \)
APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n

- Generally these functions are products of functions $q_i, \sin(q_i), \cos(q_i)$

- Note that since we can square things, we can multiply things, due to the fact that $xy = \frac{1}{2}((x + y)^2 - x^2 - y^2)$

- Thus we are equipped to do robot control using the above methods with explicit error bounds
Conclusions

• smoothness allows for discrete approach to continuous problems
• spectral intuition
• efficient, robust, general
Future work

• spike-based model
• heterogeneity
• time domain
• hardware-specific considerations