
Math 54: Worksheet Solutions

March 19

This worksheet is meant to provide some practice with concepts related to orthogonality. Since not
all of this material will be reviewed via homework before the midterm, take extra care to make sure
that you can solve these kinds of problems! Consider this as your crash course in the orthogonality
skills that might show up on the midterm. (Unfortunately, I don’t know what’s on the midterm, so I
can’t guarantee that there won’t be surprises! What I can say is that this is probably my best work-
sheet so far.) Detailed solutions are available at https://math.berkeley.edu/⇠lindsey/math54
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Find an orthogonal basis for W and an orthogonal basis for W

?. [Hint: for the second
part, apply the fact that Col(A)
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= Null(A
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) to an appropriately chosen matrix A.] Then

find an orthonormal basis for each.

Solution: First let’s concern ourselves with the first part of the question. Let v1 =
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they form a basis for W . Converting a basis for a vector space into an orthogonal basis for
the vector space is exactly what Gram-Schmidt is for.
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Since W is only 2-dimensional, there is only one more step to go. Let

u2 = v2 � Projspan(u1) (v2) = v2 �
v2 · u1
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Therefore {u1,u2} =
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; is an orthogonal basis for W . To make this

into an orthonormal basis we take each basis element and divide by its length, so

⇢
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is an orthonormal basis for W . (One could simplify these radicals differently / better.)

In general, if you want to turn a basis {v1, . . . ,vk} for some vector space V (such as a
subspace of Rn) into an orthogonal basis {u1, . . . ,uk} for V , the Gram-Schmidt process
looks like this. The first step is to let u1 = v1. Then afterwards, suppose you are at the k-th
step, so you have already found u1, . . . ,uk�1, and you want to find uk. Then you define

uk = vk � Projspan(u1,...,uk�1) (vk) = vk � vk · u1

u1 · u1
u1 � · · ·� vk · uk�1

uk�1 · uk�1
uk�1.

Back to the problem. When finding a basis for W

?, we usually want to make use of the
general fact that Col(A)

?
= Null(A

T
).

In this setting, let A = (v1 v2). This means that W = Col(A), so W
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= Null(A

T
), so

we want to find a basis for Null(A

T
). Compute A
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(When you transpose a matrix A, you take the first column of A and make it the first row,
take the second column of A and make it the second row, etc.)
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Then x3 is free and a general solution is given by
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; is a basis for W?. Since the basis

has only one element, it is an orthgonal basis. (If there were more elements in the basis, to
find an orthogonal basis we might have to apply Gram-Schmidt!) To find an orthonormal

basis, we have to normalize, yielding
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(2) With W as in question 1, Compute ProjW
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Solution: For this kind of question, it is often useful to remember the general fact that for
any v,

v = ProjW (v) + ProjW?(v).
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Applied to this case, we have that
0

@
3

2

4

1

A
= ProjW

0

@
3

2

4

1

A
+ ProjW?

0

@
3

2

4

1

A
. (?)

What this means is that we really only have to compute one of the things we were asked to
compute, and then we can recover the other one via this relation.

Now we have an orthogonal basis {u1,u2} for W from the last problem. This means that
we can apply the formula

ProjW (v) =
v · u1

u1 · u1
u1 +

v · u2

u2 · u2
u2
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Therefore by the relation (?) above:
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In the last problem we actually computed an orthogonal basis for W
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element

0

@
�1

1

1

1

A, so we could have used computed the projection onto W

? directly via

ProjW?

0

@
3

2

4

1

A
=

0

@
3

2

4

1

A ·

0

@
�1

1

1

1

A

0

@
�1

1

1

1

A ·

0

@
�1

1

1

1

A

0

@
�1

1

1

1

A
=

3

3

0

@
�1

1

1

1

A
=

0

@
�1

1

1

1

A
,

and then we could have determined ProjW
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A via (?)! Note how much easier the second

way was in this example given that we already knew an orthogonal basis for W

?.



4

(3) With W as in question 1, what is the minimum distance between
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Solution: This minimum distance from v to W is the length kv � ProjW (v)k. Thus
we want to compute in this case:
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(4) Let A =

0
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CCA. Find a basis for Null(A)

?. [Hint: use the fact that Null(A)
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T
).]

Solution: Remember Null(A)

?
= Col(A

T
), so we need to find a basis for Col(A

T
).
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The last matrix is already in row echelon form, and we can see that the first and second
columns are pivot columns. Therefore the first and second columns of the original ma-
trix A

T (NOT THE FIRST AND SECOND COLUMNS OF THE REDUCED ECHELON
FORM) form a basis for Col(A

T
). Thus a suitable basis is
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(5) Let a1,a2,a3,b1,b2,b3 2 R3. Let A = (a1 a2 a3) and B = (b1 b2 b3). Convince yourself
that
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a2 · b1 a2 · b2 a2 · b3

a3 · b1 a3 · b2 a3 · b3
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In particular,
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a2 · a1 a2 · a2 a2 · a3
a3 · a1 a3 · a2 a3 · a3
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A
.

Use this to explain why a matrix is orthogonal if and only if the columns of the matrix form
an orthonormal set.

By the way, notice that A

T
A is always symmetric! (Recall : a matrix M is by defini-

tion symmetric if M = M

T .) What is an easier way to prove that A

T
A is symmetric?

Solution: By the rules of matrix multiplication, the (i, j) entry (row i, column j) of AT
B

should be the dot product of the i-th row of AT with the j-th column of B (namely bj).
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But the i-th row of AT is the i-th column of A, namely ai. Therefore the (i, j) entry of AT

is ai · bj , which is what we were trying to explain.

Remember that a matrix is orthogonal if and only if AT
A = I, which is true if and only if

the (i, j) entry of AT
A is 0 for i 6= j and 1 for i = j. But the (i, j) entry of AT

A is precisely
ai ·aj , so this last statement is equivalent to saying that ai ·aj are orthogonal when i 6= j and
ai ·ai = 1 for all i, which is the equivalent to saying that a1, . . . ,an form an orthonormal set.

To see that A

T
A is symmetric, one can recall the general fact that for matrices X and

Y that can be multiplied, (XY )

T
= Y

T
X

T . Therefore (A

T
A)

T
= A

T
(A

T
)

T
= A

T
A, so

A

T
A is symmetric.

(6) Let a1,a2,a3 2 R3. Let A = (a1 a2 a3). Use the result of the last problem to write ka1+a3k
in terms of the entries of AT

A. In other words, suppose

A

T
A =

0

@
c11 c12 c13

c12 c22 c23
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1
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,

and come up with a formula for ka1 + a3k in terms of the cij .

Solution: Compute

ka1 + a3k =

p
(a1 + a3) · (a1 + a3)

=

p
(a1 + a3) · a1 + (a1 + a3) · a3

=

p
a1 · a1 + a3 · a1 + a1 · a3 + a3 · a3

=

p
c11 + c31 + c13 + c33.

(Actually, since A

T
A is symmetric, we must have c31 = c13, so your answer could also bep

c11 + 2c13 + c33 or
p
c11 + 2c31 + c33.

(7) Recall the fact that Col(A)

?
= Null(A

T
) for any matrix A. (Try to prove this for a chal-

lenge!) Why does this imply the fact that Null(A)

?
= Col(A

T
) for any matrix A?

Solution: Apply the fact to the matrix A

T to reveal that Col(A

T
)

?
= Null

�
(A

T
)

T
�
=

Null(A). Take the orthogonal complement of both sides and remember that taking the
orthogonal complement twice gives you back the original subspace, yielding Col(A

T
) =

Null(A)

?.

(8) Bonus (for zero points). Suppose that A is a symmetric matrix, and suppose that v1 and
v2 are eigenvectors of A with corresponding eigenvalues �1 and �2. Moreover, suppose that
�1 6= �2. Show that v1 and v2 are orthogonal.

Solution: We know that Av1 = �1v1 and Av2 = �2v2. We also know that A = A

T .
Using these facts, compute:
�1(v1 · v2) = (�1v1)

Tv2 = (Av1)
Tv2 = vT

1 A
Tv2 = vT

1 Av2 = vT
1 (�2v2) = �2(v1 · v2).

In summary, �1(v1 · v2) = �2(v1 · v2), which implies that (�1 � �2)(v1 · v2) = 0. But
�1 6= �2, so �1 � �2 6= 0, and we can divide both sides of the last equation by �1 � �2 to
obtain v1 · v2 = 0, so v1 and v2 are orthogonal.


