Math 54: Worksheet

January 31

(1) Solve the sytem

$$
\left\{\begin{array}{c}
x_{1}+3 x_{2}-5 x_{3}=4 \\
x_{1}+4 x_{2}-8 x_{3}=7 \\
-3 x_{1}-7 x_{2}+9 x_{3}=-6 .
\end{array}\right.
$$

Give a geometric interpretation of the solution. Are there other equivalent ways to write down your solution? Can you characterize all possible ways the solution could be written down? (Hint: your answer should have to do with the corresponding homogeneous system.)
(2) What is the difference between a matrix of size $m \times n$ and a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} ? Given such a matrix, how do we define a corresponding linear transformation? Given such a linear transformation, how do we define a corresponding matrix?
(3) Can there exist a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that satisfies $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right] ?$
(4) Can there exist a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that satisfies $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$?
(5) Can there exist a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that satisfies $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}0 \\ -1\end{array}\right]$?
(6) Suppose that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are vectors in \mathbb{R}^{3} and your friend tells you the values $T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right)$, and $T\left(\mathbf{u}_{3}\right)$ of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. First of all, is it possible that there does not actually exist a linear transformation with these values? If not, has your friend given you enough information to determine the linear transformation uniquely?
(7) Suppose that A is an $m \times n$ matrix and the system $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{m}$. Which of the following are possible: $m<n, m=n, m>n$.
(8) Suppose that A is an $m \times n$ matrix and the system $A \mathbf{x}=\mathbf{b}$ is has a unique solution for all $\mathbf{b} \in \mathbb{R}^{m}$. Which of the following are possible: $m<n, m=n, m>n$.
(9) True or false: if A is an $m \times n$ matrix with $n>m$ and $\mathbf{b} \in \mathbb{R}^{m}$, then the system $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
(10) True or false: if A is an $m \times n$ matrix with $n>m$, then the system $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.
(11) Suppose that A is an $m \times n$ matrix with $n>m$. Can the corresponding linear transformation T_{A} be onto but not one-to-one? Can it be one-to-one but not onto? Can it be both? Can it be neither?
(12) Same question but for $n<m$.
(13) Same question but for $n=m$.

