Math 54: Worksheet

January 31

(1) Solve the sytem

$$\begin{cases} x_1 + 3x_2 - 5x_3 = 4\\ x_1 + 4x_2 - 8x_3 = 7\\ -3x_1 - 7x_2 + 9x_3 = -6. \end{cases}$$

Give a geometric interpretation of the solution. Are there other equivalent ways to write down your solution? Can you characterize all possible ways the solution could be written down? (Hint: your answer should have to do with the corresponding *homogeneous* system.)

- (3) Can there exist a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that satisfies $T\left(\begin{bmatrix} 1\\2 \end{bmatrix} \right) = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $T\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right) = \begin{bmatrix} 1\\0 \end{bmatrix}$?
- (4) Can there exist a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that satisfies $T\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right) = \begin{bmatrix} 1\\0 \end{bmatrix}$, $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix}$, and $T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix}$? (5) Can there exist a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that satisfies $T\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right) = \begin{bmatrix} 1\\0 \end{bmatrix}$, $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix}$, and $T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 0\\-1 \end{bmatrix}$?
- (6) Suppose that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in \mathbb{R}^3 and your friend tells you the values $T(\mathbf{u}_1), T(\mathbf{u}_2)$, and $T(\mathbf{u}_3)$ of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$. First of all, is it possible that there does not actually exist a linear transformation with these values? If not, has your friend given you enough information to determine the linear transformation uniquely?
- (7) Suppose that A is an $m \times n$ matrix and the system $A\mathbf{x} = \mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^m$. Which of the following are possible: m < n, m = n, m > n.
- (8) Suppose that A is an $m \times n$ matrix and the system $A\mathbf{x} = \mathbf{b}$ is has a unique solution for all $\mathbf{b} \in \mathbb{R}^m$. Which of the following are possible: m < n, m = n, m > n.
- (9) **True or false:** if A is an $m \times n$ matrix with n > m and $\mathbf{b} \in \mathbb{R}^m$, then the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (10) **True or false:** if A is an $m \times n$ matrix with n > m, then the system $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
- (11) Suppose that A is an $m \times n$ matrix with n > m. Can the corresponding linear transformation T_A be onto but not one-to-one? Can it be one-to-one but not onto? Can it be both? Can it be neither?
- (12) Same question but for n < m.
- (13) Same question but for n = m.