Math 54: Quiz \#9 Solution

April 27

GSI: M. Lindsey

Name: \qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Find the solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, where

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

that satisfies the inititial condition $\mathbf{x}(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Solution: First compute the eigenvalues of A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & 1 \\
0 & -\lambda & -1 \\
0 & 1 & -\lambda
\end{array}\right)=(-\lambda)\left(\lambda^{2}+1\right)
$$

so the eigenvalues are $\lambda_{1}=0, \lambda_{2}=i, \lambda_{3}=-i$.
Then compute the eigenvector for λ_{1} :

$$
A-\lambda_{1} I=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

so $\operatorname{Null}\left(A-\lambda_{1} I\right)=\operatorname{span}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and we can let $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ be our eigenvector.
Then we obtain a solution

$$
\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

This is actually a constant function, but that's okay.
Now λ_{2} and λ_{3} are a complex-conjugate pair, and we will pick $\lambda_{2}=i$ and use it to obtain two more solutions:

$$
A-\lambda_{2} I=\left(\begin{array}{ccc}
-i & 0 & 1 \\
0 & -i & -1 \\
0 & 1 & -i
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & -i \\
0 & 1 & -i
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & -i \\
0 & 0 & 0
\end{array}\right)
$$

so $\operatorname{Null}\left(A-\lambda_{2} I\right)=\operatorname{span}\left(\begin{array}{c}-i \\ i \\ 1\end{array}\right)$. Then let

$$
\mathbf{v}=\left(\begin{array}{c}
-i \\
i \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+i\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\mathbf{a}+i \mathbf{b}
$$

where $\mathbf{a}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$. Note that we can write the eigenvalue $\lambda_{2}=\alpha+i \beta$, where $\alpha=0$ and $\beta=1$. Then we use the formula to write down two solutions:

$$
\begin{aligned}
& \mathbf{x}_{2}(t)=e^{\alpha t}[\cos (\beta t) \mathbf{a}-\sin (\beta t) \mathbf{b}]=\left(\begin{array}{c}
\sin (t) \\
-\sin (t) \\
\cos (t)
\end{array}\right) \\
& \mathbf{x}_{3}(t)=e^{\alpha t}[\sin (\beta t) \mathbf{a}+\cos (\beta t) \mathbf{b}]=\left(\begin{array}{c}
-\cos (t) \\
\cos (t) \\
\sin (t)
\end{array}\right) .
\end{aligned}
$$

Then a general solution is given by

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+c_{3} \mathbf{x}_{3}(t) \\
& =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
\sin (t) \\
-\sin (t) \\
\cos (t)
\end{array}\right)+c_{3}\left(\begin{array}{c}
-\cos (t) \\
\cos (t) \\
\sin (t)
\end{array}\right) \\
& =\left(\begin{array}{c}
c_{1}+c_{2} \sin (t)-c_{3} \cos (t) \\
-c_{2} \sin (t)+c_{3} \cos (t) \\
c_{2} \cos (t)+c_{3} \sin (t)
\end{array}\right)
\end{aligned}
$$

Now we use the initial condition to determine the values of c_{1}, c_{2}, c_{3}. From the above general solution, we have that

$$
\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)=\mathbf{x}(0)=\left(\begin{array}{c}
c_{1}+c_{2} \sin (0)-c_{3} \cos (0) \\
-c_{2} \sin (0)+c_{3} \cos (0) \\
c_{2} \cos (0)+c_{3} \sin (0)
\end{array}\right)=\left(\begin{array}{c}
c_{1}-c_{3} \\
c_{3} \\
c_{2}
\end{array}\right) .
$$

Therefore $c_{2}=1, c_{3}=1$, and $c_{1}=2$. Thus our solution is

$$
\mathbf{x}(t)=\left(\begin{array}{c}
2+\sin (t)-\cos (t) \\
-\sin (t)+\cos (t) \\
\cos (t)+\sin (t)
\end{array}\right)
$$

