Math 54: Quiz \#8 Solution

April 20
GSI: M. Lindsey
Name: \qquad
Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Find the general solution of

$$
y^{\prime \prime}(t)-y^{\prime}(t)-6 y(t)=0
$$

Solution: Solve the auxiliary equation:

$$
0=r^{2}-r-6=(r-3)(r+2)
$$

so we obtain two roots $r_{1}=3, r_{2}=-2$. Then a general solution is given by

$$
y(t)=C_{1} e^{3 t}+C_{2} e^{-2 t}
$$

Problem 2

Find the general solution of

$$
y^{\prime \prime}(t)-y^{\prime}(t)-6 y(t)=\cos (t)+e^{t} .
$$

(Use the superposition principle.)
Solution: First compute a particular solution $y_{p}^{(1)}$ of

$$
y^{\prime \prime}(t)-y^{\prime}(t)-6 y(t)=\cos (t)
$$

We make the guess

$$
y_{p}^{(1)}=A \cos (t)+B \sin (t)
$$

and we want

$$
\begin{aligned}
\cos (t) & =\left(y_{p}^{(1)}\right)^{\prime \prime}(t)-\left(y_{p}^{(1)}\right)^{\prime}(t)-6 y_{p}^{(1)}(t) \\
& =[-A \cos (t)-B \sin (t)]-[-A \sin (t)+B \cos (t)]-6[A \cos (t)+B \sin (t)] \\
& =(-7 A-B) \cos (t)+(-7 B+A) \sin (t)
\end{aligned}
$$

Therefore we want to solve

$$
\left\{\begin{aligned}
-7 A-B & =0 \\
-7 B+A & =0
\end{aligned}\right.
$$

The second equation gives $A=7 B$; substituting into the first yields $-49 B-B=0$, so $B=-\frac{1}{50}$, and $A=-\frac{7}{50}$, and we have found

$$
y_{p}^{(1)}=-\frac{7}{50} \cos (t)-\frac{1}{50} \sin (t) .
$$

Next we want to compute a particular solution $y_{p}^{(2)}$ of

$$
y^{\prime \prime}(t)-y^{\prime}(t)-6 y(t)=e^{t} .
$$

We make the guess

$$
y_{p}^{(2)}=C e^{t}
$$

and we want

$$
\begin{aligned}
e^{t} & =\left(y_{p}^{(2)}\right)^{\prime \prime}(t)-\left(y_{p}^{(2)}\right)^{\prime}(t)-6 y_{p}^{(2)}(t) \\
& =C e^{t}-C e^{t}-6 C e^{t} \\
& =-6 C e^{t}
\end{aligned}
$$

Therefore we want to solve $1=-6 C$, so $C=-\frac{1}{6}$. Then we have found

$$
y_{p}^{(2)}=-\frac{1}{6} e^{t}
$$

Then, by the superposition principle, $y_{p}^{(1)}+y_{p}^{(2)}$ is a particular solution of

$$
y^{\prime \prime}(t)-y^{\prime}(t)-6 y(t)=\cos (t)+e^{t}
$$

Moreover, recall that we found the general solution to the homogeneous equation in the last problem. Then a general solution can be written

$$
y(t)=C_{1} e^{3 t}+C_{2} e^{-2 t}-\frac{7}{50} \cos (t)-\frac{1}{50} \sin (t)-\frac{1}{6} e^{t}
$$

