
Math 54: Quiz #7 Solution

April 13

GSI: M. Lindsey

Name:

Please give neat and organized answers. Whenever applicable (especially for

computational questions), make it clear what strategy you are using.

Problem 1

Compute a singular value decomposition (SVD) of
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making it clear what it means to find an SVD for A and how you have done so.

Solution: Compute
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are orthonormal eigenvectors of ATA with

eigenvalues 3 and 2, respectively, hence these are right singular vectors for A
with singular values �1 =
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Then define u1 = 1
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These are our first two left singular vectors. We need a third singular vector u3 that

is orthogonal to u1 and u2 and of length 1. Note that the orthogonality conditions

u1 · u3 = 0 and u2 · u3 = 0 are equivalent to the system
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u3 = 0.

To solve for u3, we row-reduce
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So the solution space is
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We need to find a vector in this span that is of length 1, so simply normalize0
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Then our SVD is given by

A = U⌃V T =
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