Math 54: Quiz \#7 Solution

April 13
GSI: M. Lindsey

Name: \qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Compute a singular value decomposition (SVD) of

$$
A=\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)
$$

making it clear what it means to find an SVD for A and how you have done so.
Solution: Compute

$$
A^{T} A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

Then $\mathbf{v}_{1}=\binom{0}{1}$ and $\mathbf{v}_{2}=\binom{1}{0}$ are orthonormal eigenvectors of $A^{T} A$ with eigenvalues 3 and 2 , respectively, hence these are right singular vectors for A with singular values $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=\sqrt{2}$, respectively, and we form the matrix $V=\left(\mathbf{v}_{1} \mathbf{v}_{2}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. (Note that the ordering is chosen so that $\sigma_{1} \geq \sigma_{2}$.)

Then define $\mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}, \mathbf{u}_{2}=\frac{1}{\sigma_{2}} A \mathbf{v}_{2}$, so

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

and

$$
\mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

These are our first two left singular vectors. We need a third singular vector \mathbf{u}_{3} that is orthogonal to \mathbf{u}_{1} and \mathbf{u}_{2} and of length 1 . Note that the orthogonality conditions $\mathbf{u}_{1} \cdot \mathbf{u}_{3}=0$ and $\mathbf{u}_{2} \cdot \mathbf{u}_{3}=0$ are equivalent to the system

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right) \mathbf{u}_{3}=\mathbf{0}
$$

To solve for \mathbf{u}_{3}, we row-reduce

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right)
$$

So the solution space is

$$
\operatorname{span}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

We need to find a vector in this span that is of length 1 , so simply normalize $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$ to obtain

$$
\mathbf{u}_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) .
$$

Then our SVD is given by

$$
A=U \Sigma V^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & \sqrt{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{T} .
$$

