Math 54: Quiz \#6 Solutions
 March 16

GSI: M. Lindsey

Name: \qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Let

$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 3
\end{array}\right) .
$$

Diagonalize A (making it clear what it means to diagonalize A and how you have done so). Check that eigenvectors of A with distinct eigenvalues are orthogonal.

Solution: Compute the characteristic polynomial via cofactor expansion along the second column:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
3-\lambda & 0 & 1 \\
0 & 3-\lambda & 0 \\
1 & 0 & 3-\lambda
\end{array}\right) \\
& =-0+(3-\lambda) \operatorname{det}\left(\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right)-0 \\
& =(3-\lambda)\left[(3-\lambda)^{2}-1\right] \\
& =(3-\lambda)\left[\lambda^{2}-6 \lambda+9-1\right] \\
& =(3-\lambda)\left[\lambda^{2}-6 \lambda+8\right] \\
& =(3-\lambda)(\lambda-4)(\lambda-2) .
\end{aligned}
$$

Therefore the eigenvalues are $\lambda_{1}=3, \lambda_{2}=4, \lambda_{3}=2$. (One could also choose different orderings, corresponding to different valid diagonalizations.)

Then we compute the null spaces of $A-\lambda_{1} I, A-\lambda_{2} I$, and $A-\lambda_{3} I$:

$$
A-\lambda_{1} I=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

A general solution of the homogeneous equation is $x_{1}=0, x_{2}$ free, $x_{3}=0$. Thus

$$
\operatorname{Null}\left(A-\lambda_{1} I\right)=\operatorname{span}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right) .
$$

In particular we can choose an eigenvector $\mathbf{v}_{1}=(0,1,0)^{T}$.

Next,

$$
A-\lambda_{2} I=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

A general solution of the homogeneous equation is $x_{1}=x_{3}, x_{2}=0, x_{3}$ free. Thus

$$
\operatorname{Null}\left(A-\lambda_{3} I\right)=\operatorname{span}\left(\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right)
$$

In particular we can choose an eigenvector $\mathbf{v}_{2}=(1,0,1)^{T}$.
Finally,

$$
A-\lambda_{3} I=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

A general solution of the homogeneous equation is $x_{1}=-x_{3}, x_{2}=0, x_{3}$ free. Thus

$$
\operatorname{Null}\left(A-\lambda_{3} I\right)=\operatorname{span}\left(\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right)
$$

In particular we can choose an eigenvector $\mathbf{v}_{3}=(1,0,-1)^{T}$.
We can compute directly that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathbf{v}_{1} \cdot \mathbf{v}_{3}=\mathbf{v}_{2} \cdot \mathbf{v}_{3}=0$, so eigenvectors with distinct eigenvalues are orthogonal. Moreover, we can read off the diagonalization

$$
A=P D P^{-1}
$$

where

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right), \quad P=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right)
$$

Problem 2

Let

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)
$$

And consider the basis

$$
\mathcal{B}=\left\{\binom{0}{1},\binom{1}{0}\right\}
$$

of \mathbb{R}^{2}. (Note that the ordering of the basis matters!) Compute the matrix of A relative to the basis \mathcal{B}, i.e., $[A]_{\mathcal{B}, \mathcal{B}}$.

Solution: Write $\mathbf{b}_{1}=\binom{0}{1}, \mathbf{b}_{2}=\binom{1}{0}$, so $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Compute

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left[\left[A \mathbf{b}_{1}\right]_{\mathcal{B}}\left[A \mathbf{b}_{2}\right]_{\mathcal{B}}\right]=\left[\left[\binom{1}{2}\right]_{\mathcal{B}}\left[\binom{3}{1}\right]_{\mathcal{B}}\right] .
$$

Note that $\binom{1}{2}=2 \mathbf{b}_{1}+1 \mathbf{b}_{2}$, and $\binom{3}{1}=1 \mathbf{b}_{1}+3 \mathbf{b}_{2}$, so

$$
\left[\binom{1}{2}\right]_{\mathcal{B}}=\binom{2}{1}, \quad\left[\binom{3}{1}\right]_{\mathcal{B}}=\binom{1}{3}
$$

and we can read off the answer as

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

