Math 54: Quiz \#5 Solutions
 March 9
 GSI: M. Lindsey

Name: \qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Find a matrix that is not diagonalizable. (Clearly justify that it is not diagonalizable.)

Solution: Some examples include

$$
A_{1}:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), A_{2}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

One can check that A_{1} has 0 as its only eigenvalue (with algebraic multiplicity 2), but the geometric multiplicity of this eigenvalue is only 1.

Meanwhile, the characteristic polynomial of A_{2} has no real roots. (Check this!)

Problem 2

Let A be a diagonalizable $n \times n$ matrix, and let Q be an invertible matrix. Show that $Q^{-1} A Q$ is diagonalizable.

Solution: Since A is diagonalizable, this means precisely that we can write $A=$ $P^{-1} D P$, where P is invertible and D is diagonal. Then

$$
Q^{-1} A Q=Q^{-1} P^{-1} D P Q
$$

Recall that since P and Q are invertible, $P Q$ is invertible with $(P Q)^{-1}=Q^{-1} P^{-1}$. Therefore

$$
Q^{-1} A Q=(P Q)^{-1} D(P Q)
$$

Now we have diagonalized the matrix $Q^{-1} A Q$, so we are done.

Bonus: Suppose that A and B are $n \times n$ matrices and that A is invertible. Show that the characteristic polynomial of $A B$ is the same as the characteristic polynomial of $B A$.

Solution: The characteristic polynomial of $A B$ is

$$
\begin{aligned}
\operatorname{det}(A B-\lambda I) & =\operatorname{det}\left(A\left(B-\lambda A^{-1}\right)\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(B-\lambda A^{-1}\right) \\
& =\operatorname{det}\left(B-\lambda A^{-1}\right) \operatorname{det}(A) \\
& =\operatorname{det}\left(\left(B-\lambda A^{-1}\right) A\right) \\
& =\operatorname{det}(B A-\lambda I),
\end{aligned}
$$

which is the characteristic polynomial of $B A$.

