Math 54: Quiz #4 Solutions March 2

GSI: M. Lindsey

Name:

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Let

$$\mathbf{b}_1 = \begin{bmatrix} 7 \\ -2 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \ \mathbf{c}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \ \mathbf{c}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}.$$

Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$. Check that \mathcal{B} and \mathcal{C} are bases for \mathbb{R}^2 . Then compute the change-of-coordinates matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ from \mathcal{B} to \mathcal{C} .

Solution: Note that \mathcal{B} will be as basis for \mathbb{R}^2 as long as \mathbf{b}_1 and \mathbf{b}_2 are linearly independent. This can be checked by showing that all of the columns of the matrix $[\mathbf{b}_1 \mathbf{b}_2]$ are pivot columns, but we can also just observe that neither \mathbf{b}_1 nor \mathbf{b}_2 is a scalar multiple of the other, which is sufficient to show the linear independence of two vectors. Similarly, neither \mathbf{c}_1 nor \mathbf{c}_2 is a scalar multiple of the other, so $\mathcal C$ is also a basis for \mathbb{R}^2 .

Next we construct the matrix $[\mathbf{c}_1 \mathbf{c}_2 | \mathbf{b}_1 \mathbf{b}_2]$ and row-reduce to reveal $[I_2 | P_{\mathcal{C} \leftarrow \mathcal{B}}]$:

$$\begin{bmatrix} 4 & 5 & 7 & 2 \\ 1 & 2 & -2 & -1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & -2 & -1 \\ 4 & 5 & 7 & 2 \end{bmatrix}$$
$$\xrightarrow{R_2 \leftrightarrow R_2 \to 4R_1} \begin{bmatrix} 1 & 2 & -2 & -1 \\ 0 & -3 & 15 & 6 \end{bmatrix}$$
$$\xrightarrow{R_2 \leftarrow -\frac{1}{3}R_2} \begin{bmatrix} 1 & 2 & -2 & -1 \\ 0 & -3 & 15 & 6 \end{bmatrix}$$
$$\xrightarrow{R_2 \leftarrow -\frac{1}{3}R_2} \begin{bmatrix} 1 & 2 & -2 & -1 \\ 0 & 1 & -5 & -2 \end{bmatrix}$$
$$\xrightarrow{R_1 \leftarrow R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 8 & 3 \\ 0 & 1 & -5 & -2 \end{bmatrix},$$

 \mathbf{SO} $\begin{bmatrix} -5 & -2 \end{bmatrix}$

Problem 2

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation, and suppose that T is onto. What is $\dim(\ker(T))$?

Solution: By the 'rank-nullity' theorem, $\dim(\ker(T)) + \dim(\operatorname{Range}(T)) = 4$. Since T is onto, $\operatorname{Range}(T) = \mathbb{R}^3$, so $\dim(\operatorname{Range}(T)) = 3$. Thus $\dim(\ker(T)) = 4 - 3 = 1$.