Math 54: Quiz \#4

March 2
GSI: M. Lindsey

Name: \qquad
Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Let

$$
\mathbf{b}_{1}=\left[\begin{array}{c}
7 \\
-2
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{l}
4 \\
1
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$. Check that \mathcal{B} and \mathcal{C} are bases for \mathbb{R}^{2}. Then compute the change-of-coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C}.

Problem 2

Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation, and suppose that T is onto. What is $\operatorname{dim}(\operatorname{ker}(T))$?

