
Math 54: Quiz #3

February 23

GSI: M. Lindsey

Name:

Please give neat and organized answers. Whenever applicable (especially for

computational questions), make it clear what strategy you are using.

Problem 1
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Find a basis Null(A) and a basis for Col(A).

Solution: Row-reduce A as follows
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The pivot columns of A are the first, second, and fourth columns, so these columns

of A form a basis of Col(A), i.e.,
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is a basis for Col(A).
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Moreover, we can see that a general solution of Ax = 0 can be written in terms

of the free variable x3 as
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is a basis for Null(A).

Problem 2

Let T : Rn ! Rm
be a linear transformation. Show that ker(T ) is a subspace of

Rn
.

Solution: We want to show (1) that ker(T ) contains the zero vector, (2) that

ker(T ) is closed under scalar multiplication, and (3) that ker(T ) is closed under

addition.

(1) We know that T (0) = 0 (since this is a general fact about linear transfor-

mations). [Warning: note that the 0 on the left-hand side of this equation

is the zero vector in Rn
, while the 0 on the right-hand side is the zero vector

in Rm
!] This means 0 2 ker(T ), as desired.

(2) Suppose that v 2 ker(T ) and � is a scalar. We then know that T (v) = 0,

and we want to show that �v 2 ker(T ), i.e., that T (�v) = 0. But

T (�v) = �T (v) = �0 = 0, as we wanted to show.

(3) Suppose that v,w 2 ker(T ). We then know that T (v) = 0 and T (w) = 0,

and we want to show that v + w 2 ker(T ), i.e., that T (v + w) = 0. But

T (v +w) = T (v) + T (w) = 0, as we wanted to show.


