Math 54: Quiz \#3

February 23
GSI: M. Lindsey

Name: \qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Let

$$
A=\left[\begin{array}{cccc}
1 & -3 & -8 & -3 \\
-2 & 4 & 6 & 0 \\
0 & 1 & 5 & 7
\end{array}\right]
$$

Find a basis $\operatorname{Null}(A)$ and a basis for $\operatorname{Col}(A)$.
Solution: Row-reduce A as follows

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -3 & -8 & -3 \\
-2 & 4 & 6 & 0 \\
0 & 1 & 5 & 7
\end{array}\right] \quad R_{2} \longleftrightarrow R_{2}+2 R_{1} \quad\left[\begin{array}{cccc}
1 & -3 & -8 & -3 \\
0 & -2 & -10 & -6 \\
0 & 1 & 5 & 7
\end{array}\right]} \\
& \xrightarrow{R_{2} \longleftrightarrow-\frac{1}{2} R_{2}}\left[\begin{array}{cccc}
1 & -3 & -8 & -3 \\
0 & 1 & 5 & 3 \\
0 & 1 & 5 & 7
\end{array}\right] \\
& R_{3} \xrightarrow{\leftrightarrow R_{3}}-R_{2} \quad\left[\begin{array}{cccc}
1 & -3 & -8 & -3 \\
0 & 1 & 5 & 3 \\
0 & 0 & 0 & 4
\end{array}\right] \\
& \xrightarrow{R_{3} \longleftarrow \frac{1}{4} R_{3}}\left[\begin{array}{cccc}
1 & -3 & -8 & -3 \\
0 & 1 & 5 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{1} \leftarrow R_{1}+3 R_{2}}\left[\begin{array}{llll}
1 & 0 & 7 & 6 \\
0 & 1 & 5 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{1} \leftrightarrow R_{1}-6 R_{3}}\left[\begin{array}{llll}
1 & 0 & 7 & 0 \\
0 & 1 & 5 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{2} \longleftrightarrow R_{2}-3 R_{3}\left[\begin{array}{llll}
1 & 0 & 7 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

The pivot columns of A are the first, second, and fourth columns, so these columns of A form a basis of $\operatorname{Col}(A)$, i.e.,

$$
\left\{\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
7
\end{array}\right)\right\}
$$

is a basis for $\operatorname{Col}(A)$.

Moreover, we can see that a general solution of $A \mathbf{x}=\mathbf{0}$ can be written in terms of the free variable x_{3} as

$$
\left(\begin{array}{c}
-7 x_{3} \\
-5 x_{3} \\
x_{3} \\
0
\end{array}\right)=x_{3}\left(\begin{array}{c}
-7 \\
-5 \\
1 \\
0
\end{array}\right)
$$

Thus

$$
\left\{\left(\begin{array}{c}
-7 \\
-5 \\
1 \\
0
\end{array}\right)\right\}
$$

is a basis for $\operatorname{Null}(A)$.

Problem 2

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Show that $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{n}.

Solution: We want to show (1) that $\operatorname{ker}(T)$ contains the zero vector, (2) that $\operatorname{ker}(T)$ is closed under scalar multiplication, and (3) that $\operatorname{ker}(T)$ is closed under addition.
(1) We know that $T(\mathbf{0})=\mathbf{0}$ (since this is a general fact about linear transformations). [Warning: note that the $\mathbf{0}$ on the left-hand side of this equation is the zero vector in \mathbb{R}^{n}, while the $\mathbf{0}$ on the right-hand side is the zero vector in $\mathbb{R}^{m}!$ This means $\mathbf{0} \in \operatorname{ker}(T)$, as desired.
(2) Suppose that $\mathbf{v} \in \operatorname{ker}(T)$ and λ is a scalar. We then know that $T(\mathbf{v})=\mathbf{0}$, and we want to show that $\lambda \mathbf{v} \in \operatorname{ker}(T)$, i.e., that $T(\lambda \mathbf{v})=\mathbf{0}$. But $T(\lambda \mathbf{v})=\lambda T(\mathbf{v})=\lambda \mathbf{0}=\mathbf{0}$, as we wanted to show.
(3) Suppose that $\mathbf{v}, \mathbf{w} \in \operatorname{ker}(T)$. We then know that $T(\mathbf{v})=\mathbf{0}$ and $T(\mathbf{w})=\mathbf{0}$, and we want to show that $\mathbf{v}+\mathbf{w} \in \operatorname{ker}(T)$, i.e., that $T(\mathbf{v}+\mathbf{w})=\mathbf{0}$. But $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})=\mathbf{0}$, as we wanted to show.

