Math 54: Quiz \#2 Solutions
 February 2
 GSI: M. Lindsey

Name: \qquad
Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using.

Problem 1

Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-3 & -1 & 2 \\
0 & 5 & 3
\end{array}\right]
$$

Do the columns of A span \mathbb{R}^{3} ?
Solution: The columns of A span \mathbb{R}^{3} if and only if A has a pivot position in every row, i.e., if and only if any echelon form of A has no row of zeros. (This condition is also equivalent to the linear system $A \mathbf{x}=\mathbf{b}$ being consistent for every $\mathbf{b} \in \mathbb{R}^{3}$.)

Then row-reduce A as follows:

$$
\begin{array}{cc}
{\left[\begin{array}{ccc}
1 & 2 & 1 \\
-3 & -1 & 2 \\
0 & 5 & 3
\end{array}\right]} & \xrightarrow{R_{2} \leftrightarrow R_{2}+3 R_{1}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 5 & 5 \\
0 & 5 & 3
\end{array}\right] \\
& \\
& \\
R_{3} \leftrightarrow R_{3}-R_{2}
\end{array}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 5 & 5 \\
0 & 0 & -2
\end{array}\right] .
$$

Evidently we have a pivot position in every row, so the answer is yes, the columns of A do span \mathbb{R}^{3}.

Problem 2

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
-2 \\
h
\end{array}\right]
$$

(a) For what values of h is \mathbf{v}_{3} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?

Solution: Note that \mathbf{v}_{3} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ if and only if the system

$$
\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right] \mathbf{x}=\mathbf{v}_{3}
$$

is consistent. Then consider the augmented matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -4 \\
2 & 2 & -2 \\
1 & 2 & h
\end{array}\right]
$$

and row-reduce to echelon form:

$$
\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 2 & -4 \\
2 & 2 & -2 \\
1 & 2 & h
\end{array}\right]} & \begin{array}{l}
R_{2} \leftrightarrow R_{2}-2 R_{1}
\end{array} & {\left[\begin{array}{ccc}
1 & 2 & -4 \\
0 & -2 & 6 \\
1 & 2 & h
\end{array}\right]} \\
& \begin{array}{l}
R_{3} \leftrightarrow R_{3}-R_{1}
\end{array} & {\left[\begin{array}{ccc}
1 & 2 & -4 \\
0 & -2 & 6 \\
0 & 0 & h+4
\end{array}\right] .}
\end{array}
$$

From this echelon form, we can tell that the last column is a pivot if and only if $h \neq-4$. Thus the system is consistent if and only if $h=-4$. Thus the only value of h for which \mathbf{v}_{3} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is $h=-4$.
(b) For what values of h is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent?

Solution: Recall that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent if and only if the system

$$
\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right] \mathbf{x}=\mathbf{0}
$$

has a nontrivial solution (i.e., if and only if the solution is not just the trivial solution $\mathbf{x}=0$). To see whether this is the case, we should row-reduce the coefficient matrix $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right]$ to see if we have any free columns. Note that this matrix A is the same as in part (a), though the relevant interpretation of it is different in this part. Thus we have already done the work of row-reducing it, and we can see from above that A has a free column if and only if $h=-4$. Thus the only value of h for which $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent is $h=-4$.

