Math 54: Fourier cosine and sine series

May 1

Suppose that f is a (piecewise continuous) function on $[0, L]$. This is different from the setting of the ordinary Fourier series, in which we considered functions on $[-L, L]$. The Fourier cosine series represents f as a sum of the even Fourier modes, i.e.,

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

where

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \text { for } n=0,1, \ldots
$$

(The Fourier cosine series can be derived by extending f to an even function on $[-L, L]$, then computing the ordinary Fourier series for this function on this symmetric interval. Since f is even on the enlarged interval, all of the b_{n} coefficients will be zero, and the a_{n} coefficients will be given by the above formula. See my handout on Fourier series for more details.)

Now if f is again a (piecewise continuous) function on $[0, L]$, the Fourier sine series represents f as a sum of the odd Fourier modes, i.e.,

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \text { for } n=1,2, \ldots
$$

(The Fourier sine series can be derived by extending f to an odd function on $[-L, L]$, then computing the ordinary Fourier series for this function on this symmetric interval. Since f is odd on the enlarged interval, all of the a_{n} coefficients will be zero, and the b_{n} coefficients will be given by the above formula.)

To compute the Fourier cosine and sine series for some given function f, you need only plug f into the above formulas and compute the appropriate integrals. Also see page 589 in the textbook.

