Math 54: Fourier series

April 25
Let V be the set of piecewise continuous functions on $[-L, L] . V$ is a vector space. We can make V into an inner product space by defining an inner product via

$$
\langle f, g\rangle=\int_{-L}^{L} f(x) g(x) d x
$$

Define functions $f_{0}, f_{1}, g_{1}, f_{2}, g_{2}, \ldots$ in V via

$$
f_{0}(x)=\frac{1}{\sqrt{2 L}}
$$

and

$$
f_{n}(x)=\frac{1}{\sqrt{L}} \cos \left(\frac{n \pi x}{L}\right), \quad g_{n}(x)=\frac{1}{\sqrt{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

for $n \geq 1$. Notice that these functions are periodic with respect to the interval $[-L, L]$.
In fact, $\left\{f_{0}, f_{1}, g_{1}, f_{2}, g_{2}, \ldots\right\}$ is an orthonormal set with respect to the inner product defined above. Even more amazingly, this set is an orthonormal 'basis' of sorts, so any (nice enough ${ }^{1}$) function can be written

$$
f=\left\langle f, f_{0}\right\rangle f_{0}+\sum_{n=1}^{\infty}\left[\left\langle f, f_{n}\right\rangle f_{n}+\left\langle g, g_{n}\right\rangle g_{n}\right]
$$

Writing this out by plugging in our expressions for $f_{0}, f_{1}, g_{1}, f_{2}, g_{2}, \ldots$, we obtain

$$
\begin{aligned}
f(x)= & \left(\int_{-L}^{L} f(y) \frac{1}{\sqrt{2 L}} d y\right) \frac{1}{\sqrt{2 L}} \\
& +\sum_{n=1}^{\infty}\left(\int_{-L}^{L} f(y) \frac{1}{\sqrt{L}} \cos \left(\frac{n \pi y}{L}\right) d y\right) \frac{1}{\sqrt{L}} \cos \left(\frac{n \pi x}{L}\right) \\
& +\sum_{n=1}^{\infty}\left(\int_{-L}^{L} f(y) \frac{1}{\sqrt{L}} \sin \left(\frac{n \pi y}{L}\right) d y\right) \frac{1}{\sqrt{L}} \sin \left(\frac{n \pi x}{L}\right) \\
= & \frac{1}{2}\left(\frac{1}{L} \int_{-L}^{L} f(y) d y\right) \\
& +\sum_{n=1}^{\infty}\left(\frac{1}{L} \int_{-L}^{L} f(y) \cos \left(\frac{n \pi y}{L}\right) d y\right) \cos \left(\frac{n \pi x}{L}\right) \\
& +\sum_{n=1}^{\infty}\left(\frac{1}{L} \int_{-L}^{L} f(y) \sin \left(\frac{n \pi y}{L}\right) d y\right) \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Therefore, if we define

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \text { for } n=0,1, \ldots \text { and } \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \text { for } n=1,2, \ldots,
$$

then the Fourier series of f can be written

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

This matches the conventions from the textbook (see page 576). (Notice that in fact $\left\langle f, f_{n}\right\rangle \neq a_{n},\left\langle f, g_{n}\right\rangle \neq b_{n}$, so one must be careful about the normalization convention that one is using!)

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ considerable amount of extra math is needed to describe precisely what we mean by this.

