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Complex numbers. The set C of complex numbers is defined to be the set of
z = x + iy where x and y are real numbers (i.e., x, y 2 R). For such z = x + iy

we say that x is the real part and y is the imaginary part, and we write x = Re(z),
y = Im(z). A general number z 2 C is called complex, but if the real part of z is
zero, i.e., if Re(z) = 0, then we say that z is imaginary (or, for emphasis, purely

imaginary). If the imaginary part of z is zero, i.e., if Im(z) = 0, then we say that
z is real.

C can be visualized as a plane. We view the real and imaginary parts x and y of
a complex number z = x+ iy as the x- and y-coordinates of z in the complex plane.
In the complex plane, the ‘x-axis’ is referred to as the real axis, and the ‘y-axis’ is
referred to as the imaginary axis.

Complex addition. Complex numbers can be added as follows. If z1 = x1 + iy1

and z2 = x2 + iy2, then the sum z1 + z2 is given by

z1 + z2 = (x1 + y1) + i(x2 + y2).

(If one identifies the complex plane C with R2, then the addition of complex num-
bers corresponds to usual vector addition in R2.)

Complex multiplication. C comes equipped with an extra structure that is not
present in R2: two complex numbers can be multiplied to yield another complex
number. Algebraic manipulation complex numbers is formally the same as the
algebraic manipulation of numbers that you are used to, except with the extra
relation that i

2
= �1. Complex multiplication is defined accordingly: if z1 =

x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i

2
y1y2

= (x1x2 � y1y2) + i(x1y2 + y1x2).

In the last expression, we have written the complex number z1z2 in a way that
makes it clear what its real and imaginary parts are.

Note that complex multiplication (just like real multiplication) is commutative
and associative (and satisfies the distributive property over addition).
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Exponentiation of complex numbers. For z 2 C, it’s not immediately clear
what one wants the expression e

z to mean. One way to extend the definition of
exponentiation to the complex numbers is via the Taylor series: simply define

e

z

=

1X

n=0

1

n!

z

n

.

Fortunately, we will not have to work with this definition directly! But note that,
using this definition, one can guarantee that the usual rule

e

z1
e

z2
= e

z1+z2
(?)

holds for all z1, z2 2 C. (Try proving this for a challenge!)

One can also use the Taylor series to describe the exponential of a purely imag-
inary number in terms of sines and cosines. (Note that we additionally have to
recall the Taylor series for sine and cosine to carry out this proof; also try this for
a challenge!) To wit, we have the following identity: if ✓ is a real number, then

e

i✓

= cos(✓) + i sin(✓).

This is called Euler’s formula. (In particular, plugging in the value ✓ = ⇡ yields
Euler’s identity : e

i⇡

= �1.)

Notice that Euler’s formula, together with the rule (?), can be used to compute
the real and imaginary parts of the exponential of an arbitrary complex number
z = x+ iy. Indeed, for such z,

e

z

= e

x+iy

= e

x

e

iy

= e

x

cos(y) + ie

x

sin(y),

so the real part of ez is e

x

cos(y) and the imaginary part is e

x

sin(y). (In fact, we
could have taken this as our definition of complex exponentiation, but the other
definition is a bit more mathematically appealing.)

Polar form of a complex number. We can think of complex numbers in terms
of their polar coordinates in the complex plane. What we mean by this is the fol-
lowing. Temporarily view C as the plane R2 (and forget about the extra structure).
Then we can assign every complex number z polar coordinates (r, ✓). These are
defined such that z = r cos(✓) + ir sin(✓). Note that the ✓ coordinate is really only
defined up to integer multiples of 2⇡. We define the modulus (or length or absolute

value), denoted |z|, of a complex number z to be its r-coordinate (i.e., its distance
from the origin in the complex plane), and we define the argument (or phase), de-
noted arg(z), of z to be its ✓-coordinate.

Complex multiplication can be understood in terms of these polar coordinates:

|z1z2| = |z1||z2|, arg(z1z2) = arg(z1) + arg(z2) (mod 2⇡).

In other words, multiplication by a complex number z induces a scaling by |z| and
a rotation by arg(z).

Since the r- and ✓-coordinates of z were defined via z = r cos(✓) + ir sin(✓) =

r(cos(✓) + i sin(✓)), we can use Euler’s formula to conclude that

z = re

i✓

.
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This is the polar form of the complex number z. (Importantly, in the polar form,
both r and ✓ are real numbers; in fact r � 0.) By contrast, the form z = x+ iy is
referred to as the Cartesian form. Note that the polar radius r can be written in
terms of Cartesian coordinates as r =

p
x

2
+ y

2.

In general, if we consider an arbitrary complex number x = x + iy, we might
wonder how to write e

z in polar form. (Since z is not necessarily real, ez is not
already in polar form.) Then compute:

e

z

= e

x+iy

= e

x

e

iy

.

Note that e

x

> 0 and y 2 R, so this is the polar form. In other words, the (r, ✓)

coordinates are (e

x

, y).

Complex conjugation. If z = x+ iy, then the complex conjugate z is defined by
z = x � iy. (The real part is the same as that of z, and the imaginary part is the
negative of that of z.) In the complex plane, complex conjugation corresponds to
reflection across the real axis.

Notice that |z| = |z|, and arg(z) = � arg(z). Therefore, if we are given z in polar
form, i.e., z = re

i✓, then z = re

�i✓.

The following identity involving the complex conjugate holds: zz = |z|2. (In this
equation, the left hand size is the product of complex numbers z and z. So it’s a
special fact that the result, namely |z|2, is in fact a real number.)

In fact, there are two ways to justify this identity: via the Cartesian repre-
sentation and via polar representation. We will illustrate both. Using Cartesian
coordinates, write z = x+ iy for x, y 2 R, and compute

zz = (x+ iy)(x� iy) = x

2
+ y

2
= |z|2.

Alternatively, we can write z in polar form as z = re

i✓, so z = re

�i✓, and

zz = r

2
e

i✓�i✓

= r

2
e

0
= r

2
= |z|2.

We also have the following two identities:

Re(z) =

1

2

(z + z) , Im(z) =

1

2i

(z � z).

To see the first, write z = x+ iy, so
1

2

(z + z) =

1

2

(x+ iy + x� iy) =

1

2

2x = x = Re(z).

The second identity is established similarly:
1

2i

(z � z) =

1

2i

(x+ iy � x+ iy) =

1

2i

2iy = y = Im(z).

Auxiliary equations with complex roots. When considering the ordinary dif-
ferential equation (ODE)

ay

00
(t) + by

0
(t) + cy(t) = 0,

in the scenario that b

2 � 4ac < 0, the auxiliary equation

ar

2
+ br + c = 0
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has two complex roots r1, r2 which are complex conjugates of one another, i.e.,
r2 = r1. Therefore we can write

r1 = ↵+ i�, r2 = ↵� i�,

where ↵,� are real numbers.

We reasoned that ỹ1(t) = e

r1t and ỹ2(t) = e

r2t should form a basis of solutions
of the ODE by analogy with the case in which b

2 � 4ac > 0 (where the roots r1, r2

were real). However, this is not an entirely satisfying solution because ỹ1, ỹ2 are
complex-valued. Since our ODE involved only real numbers, we want to recover a
basis of real-valued solutions.

Note that
ỹ1(t) = e

r1t
= e

↵t

e

i�t

= e

↵t

[cos(�t) + i sin(�t)]

and
ỹ2(t) = e

r2t
= e

↵t

e

�i�t

= e

↵t

[cos(�t)� i sin(�t)] .

Then define

y1(t) :=

1

2

[ỹ1(t) + ỹ2(t)] = e

↵t

cos(�t)

y2(t) :=

1

2i

[ỹ1(t)� ỹ2(t)] = e

↵t

sin(�t).

We see that {y1, y2} is the real-valued basis of solutions that we were looking for.

Notice that actually
ỹ2(t) = ỹ1(t),

and our definition of y1, y2 was equivalent to setting
y1(t) := Re (ỹ1(t)) , y2(t) := Im (ỹ1(t)) .


