Introduction to Ryser's Conjecture

Bo Lin University of California, Berkeley

April 7th, 2014

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture

Hypergraphs are generalization of graphs where each edge could connect more than 2 vertices.

÷.

Hypergraphs are generalization of graphs where each edge could connect more than 2 vertices.

Definition

A hypergraph \mathcal{H} is a pair (V, E), where V is a set of vertices and E is a family of subsets of V. Those subsets in E are called edges of \mathcal{H} .

Examples of Hypergraphs

Example (\mathcal{H}_1)

 $V = \{v_1, v_2, v_3, v_4, v_5\}$ $E = \{\{v_1, v_2, v_3\}, \{v_1, v_4, v_5\}, \{v_2, v_3, v_4, v_5\}\}.$

→ < ∃

Examples of Hypergraphs

Example (\mathcal{H}_1)

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{\{v_1, v_2, v_3\}, \{v_1, v_4, v_5\}, \{v_2, v_3, v_4, v_5\}\}$$

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture

A hypergraph \mathcal{H} is *r*-uniform if all of its edges have *r* vertices.

A hypergraph \mathcal{H} is *r*-uniform if all of its edges have *r* vertices.

Definition

A hypergraph $\mathcal{H} = (V, E)$ is *r*-partite if V admits a partition $V = \bigcup_{i=1}^{r} V_i$ such that for $e \in E$ and $1 \leq i \leq r$, $|e \cap V_i| = 1$.

Example $(\mathcal{H}_3 = K_{n,n,n})$

The complete 3-partite hypergraph $K_{n,n,n}$. $V = \{A_1, \cdots, A_n, B_1, \cdots, B_n, C_1, \cdots, C_n\},$ $E = \{\{A_i, B_j, C_k\} | 1 \le i, j, k \le n\}.$

A matching of hypergraph \mathcal{H} is a set of pairwisely disjoint edges of \mathcal{H} . The matching number $\nu(\mathcal{H})$ is the maximal cardinality of a matching of \mathcal{H} .

A matching of hypergraph \mathcal{H} is a set of pairwisely disjoint edges of \mathcal{H} . The matching number $\nu(\mathcal{H})$ is the maximal cardinality of a matching of \mathcal{H} .

Examples:

•
$$\nu(\mathcal{H}_2) = 1.$$

•
$$\nu(\mathcal{H}_3) = n.$$

A cover (or transversal) of hypergraph \mathcal{H} is a subset W of V such that all edges intersect W. The covering number $\tau(\mathcal{H})$ is the minimal cardinality of a covering of \mathcal{H} .

A cover (or transversal) of hypergraph \mathcal{H} is a subset W of V such that all edges intersect W. The covering number $\tau(\mathcal{H})$ is the minimal cardinality of a covering of \mathcal{H} .

Examples:

•
$$\tau(\mathcal{H}_2) = 3.$$

•
$$\tau(\mathcal{H}_3) = n.$$

Proposition

 \mathcal{H} is an r-partite hypergraph. Then

 $\nu(\mathcal{H}) \leq \tau(\mathcal{H}) \leq r\nu(\mathcal{H}).$

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture

Conjecture (Ryser)

 ${\mathcal H}$ is an r-partite hypergraph. Then

 $\tau(\mathcal{H}) \le (r-1)\nu(\mathcal{H}).$

Conjecture (Ryser)

 ${\mathcal H}$ is an r-partite hypergraph. Then

 $\tau(\mathcal{H}) \le (r-1)\nu(\mathcal{H}).$

Remark

This conjecture first appeared in J.R. Henderson's Ph.D. thesis(1971), whose advisor is Herbert John Ryser. At around the same time Lovász independently conjectured a stronger statement.

Proposition (Tuza, 1983)

When r-1 is a power of prime then the number r-1 in the inequality is the sharpest.

• • = • • =

Proposition (Tuza, 1983)

When r-1 is a power of prime then the number r-1 in the inequality is the sharpest.

Proof.

(Sketch) Consider a projective plane with order r-1. Delete one vertex and all edges containing it, the remaining vertices of these edges form a partition. And all remaining edges form an r-partite hypergraph \mathcal{H} with $\nu(\mathcal{H}) = 1$ and $\tau(\mathcal{H}) = r-1$.

r = 2, the inequality is König's Theorem.

r = 2, the inequality is König's Theorem.

Theorem (Aharoni, 2001)

 \mathcal{H} is a 3-partite hypergraph. Then

 $\tau(\mathcal{H}) \leq 2\nu(\mathcal{H}).$

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture

r = 2, the inequality is König's Theorem.

Theorem (Aharoni, 2001)

 \mathcal{H} is a 3-partite hypergraph. Then

 $\tau(\mathcal{H}) \leq 2\nu(\mathcal{H}).$

Ryser's conjecture remains open for $r \geq 4$.

Theorem (Haxell & Scott, 2012)

For r = 4 and r = 5 if \mathcal{H} is an r-partite hypergraph. Then there exists $\epsilon > 0$ such that

 $\tau(\mathcal{H}) \le (r - \epsilon)\nu(\mathcal{H}).$

We could consider one particular case of the main conjecture, when

$$\nu(\mathcal{H}) = 1.$$

Then the pairwise intersection of edges are nonempty. And \mathcal{H} is called *intersecting*. So we refer to this case of the main conjecture as *intersecting case*.

We could consider one particular case of the main conjecture, when

$$\nu(\mathcal{H}) = 1.$$

Then the pairwise intersection of edges are nonempty. And \mathcal{H} is called *intersecting*. So we refer to this case of the main conjecture as *intersecting case*.

Conjecture (Intersecting Case)

 \mathcal{H} is an r-partite intersecting hypergraph. Then

$$\tau(\mathcal{H}) \le r - 1.$$

Theorem (Tuza, 1978, unpublished)

The intersecting Ryser's conjecture is true for r = 4, 5.

Theorem (Tuza, 1978, unpublished)

The intersecting Ryser's conjecture is true for r = 4, 5.

The intersecting case remains open for $r \ge 6$.

• they are not available for many r;

- they are not available for many r;
- they contain too many edges.

- they are not available for many r;
- they contain too many edges.

Mansour, Song and Yuster introduced the following definition:

Definition

For integers $r \ge 2$, let f(r) be the smallest number of edges of any *r*-partite intersecting hypergraph with $\tau(\mathcal{H}) \ge r - 1$.

Examples of f(r) When r is Small

Proposition

$$f(3) = 3.$$

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture

(▲ 문) (▲ 문)

1

Examples of f(r) When r is Small

Proposition

$$f(3) = 3.$$

Theorem (Mansour et al., 2009)

$$f(4) = 6, f(5) = 9, 12 \le f(6) \le 15.$$

A B A A B A

E

Examples of f(r) When r is Small

Proposition

$$f(3) = 3.$$

Theorem (Mansour et al., 2009)

$$f(4) = 6, f(5) = 9, 12 \le f(6) \le 15.$$

Theorem (Lin, 2013, unpublished)

f(6) = 13.

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture

((四)) ((日)) (日) (日)

A 6-partite intersecting hypergraph \mathcal{H} with 13 edges and $\tau(\mathcal{H}) = 5$

Let $V_1, V_2, V_3, V_4, V_5, V_6$ be the six subsets of V, then each of them gives a partition of the edges, based on which vertex of the subset is contained by one edge. Each small subset corresponds to one vertex.

A 6-partite intersecting hypergraph \mathcal{H} with 13 edges and $\tau(\mathcal{H}) = 5$

Let $V_1, V_2, V_3, V_4, V_5, V_6$ be the six subsets of V, then each of them gives a partition of the edges, based on which vertex of the subset is contained by one edge. Each small subset corresponds to one vertex.

V_1	$\{1,2,3,4\}$	$\{7,9,J,Q\}$	$\{8,K\}$	$\{6,10\}$	$\{5\}$
V_2	$\{1,5,6,7\}$	$\{10,3,J,K\}$	$\{2,Q\}$	{9,4}	$\{8\}$
V_3	$\{1,8,9,10\}$	$\{4,6,Q,K\}$	$\{5,J\}$	$\{3,7\}$	$\{2\}$
V_4	$\{2,8,6,J\}$	$\{4,10,5,Q\}$	$\{1,K\}$	{3,9}	$\{7\}$
V_5	$\{5,8,3,Q\}$	$\{7,10,2,K\}$	$\{1,J\}$	$\{6,9\}$	$\{4\}$
V_6	$\{2,5,9,K\}$	$\{4,7,8,J\}$	$\{1,Q\}$	${3,6}$	{10}

A 6-partite intersecting hypergraph \mathcal{H} with 13 edges and $\tau(\mathcal{H}) = 5$

Let $V_1, V_2, V_3, V_4, V_5, V_6$ be the six subsets of V, then each of them gives a partition of the edges, based on which vertex of the subset is contained by one edge. Each small subset corresponds to one vertex.

V_1	$\{1,2,3,4\}$	${7,9,J,Q}$	$\{8,K\}$	$\{6,10\}$	$\{5\}$
V_2	$\{1,5,6,7\}$	$\{10,3,J,K\}$	$\{2,Q\}$	{9,4}	{8}
V_3	$\{1,8,9,10\}$	$\{4,6,Q,K\}$	$\{5,J\}$	$\{3,7\}$	$\{2\}$
V_4	$\{2,8,6,J\}$	$\{4,10,5,Q\}$	$\{1,K\}$	{3,9}	{7}
V_5	$\{5,8,3,Q\}$	$\{7,10,2,K\}$	$\{1,J\}$	$\{6,9\}$	{4}
V_6	$\{2,5,9,K\}$	$\{4,7,8,J\}$	$\{1,Q\}$	${3,6}$	{10}

To verify this example,

- (intersecting) Every pair of edges is contained by at least one small subset.
- $(\nu(\mathcal{H}) > 4)$ The union of any 4 small subsets is not E.

From those examples it seems that f(r) would be linear in r instead of quadratic.

From those examples it seems that f(r) would be linear in r instead of quadratic.

Theorem (Mansour et al., 2009)

$$f(r) \ge (3 - \frac{1}{\sqrt{18}})r(1 - o(1)) \approx 2.764r(1 - o(1)).$$

From those examples it seems that f(r) would be linear in r instead of quadratic.

Theorem (Mansour et al., 2009)

$$f(r) \ge (3 - \frac{1}{\sqrt{18}})r(1 - o(1)) \approx 2.764r(1 - o(1)).$$

Conjecture (Mansour et al., 2009)

 $f(r) = \Theta(r).$

Thank you!

Bo Lin University of California, Berkeley Introduction to Ryser's Conjecture