Introduction to Ryser's Conjecture

Bo Lin
University of California, Berkeley

April 7th, 2014

Hypergraph

Hypergraphs are generalization of graphs where each edge could connect more than 2 vertices.

Hypergraph

Hypergraphs are generalization of graphs where each edge could connect more than 2 vertices.

Definition

A hypergraph \mathcal{H} is a pair (V, E), where V is a set of vertices and E is a family of subsets of V. Those subsets in E are called edges of \mathcal{H}.

Examples of Hypergraphs

> Example $\left(\mathcal{H}_{1}\right)$
> $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$
> $E=\left\{\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right\}$

Examples of Hypergraphs

Example $\left(\mathcal{H}_{1}\right)$

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right\} .
\end{aligned}
$$

Example (\mathcal{H}_{2}, Fano Plane)

7 vertices, 7 edges.

Uniform and Partite Hypergraphs

Definition

A hypergraph \mathcal{H} is r-uniform if all of its edges have r vertices.

Uniform and Partite Hypergraphs

Definition

A hypergraph \mathcal{H} is r-uniform if all of its edges have r vertices.

Definition

A hypergraph $\mathcal{H}=(V, E)$ is r-partite if V admits a partition $V=\bigcup_{i=1}^{r} V_{i}$ such that for $e \in E$ and $1 \leq i \leq r,\left|e \cap V_{i}\right|=1$.

Examples of Hypergraphs

Example ($\mathcal{H}_{3}=K_{n, n, n}$)

The complete 3-partite hypergraph $K_{n, n, n}$. $V=\left\{A_{1}, \cdots, A_{n}, B_{1}, \cdots, B_{n}, C_{1}, \cdots, C_{n}\right\}$, $E=\left\{\left\{A_{i}, B_{j}, C_{k}\right\} \mid 1 \leq i, j, k \leq n\right\}$.

Matching Number

Definition

A matching of hypergraph \mathcal{H} is a set of pairwisely disjoint edges of \mathcal{H}. The matching number $\nu(\mathcal{H})$ is the maximal cardinality of a matching of \mathcal{H}.

Matching Number

Definition

A matching of hypergraph \mathcal{H} is a set of pairwisely disjoint edges of \mathcal{H}. The matching number $\nu(\mathcal{H})$ is the maximal cardinality of a matching of \mathcal{H}.

Examples:

- $\nu\left(\mathcal{H}_{2}\right)=1$.
- $\nu\left(\mathcal{H}_{3}\right)=n$.

Covering Number

Definition

A cover (or transversal) of hypergraph \mathcal{H} is a subset W of V such that all edges intersect W. The covering number $\tau(\mathcal{H})$ is the minimal cardinality of a covering of \mathcal{H}.

Covering Number

Definition

A cover (or transversal) of hypergraph \mathcal{H} is a subset W of V such that all edges intersect W. The covering number $\tau(\mathcal{H})$ is the minimal cardinality of a covering of \mathcal{H}.

Examples:

- $\tau\left(\mathcal{H}_{2}\right)=3$.
- $\tau\left(\mathcal{H}_{3}\right)=n$.

Trivial Estimate

Proposition

\mathcal{H} is an r-partite hypergraph. Then

$$
\nu(\mathcal{H}) \leq \tau(\mathcal{H}) \leq r \nu(\mathcal{H})
$$

Main Conjecture

Conjecture (Ryser)
\mathcal{H} is an r-partite hypergraph. Then

$$
\tau(\mathcal{H}) \leq(r-1) \nu(\mathcal{H}) .
$$

Main Conjecture

Conjecture (Ryser)

\mathcal{H} is an r-partite hypergraph. Then

$$
\tau(\mathcal{H}) \leq(r-1) \nu(\mathcal{H}) .
$$

Remark

This conjecture first appeared in J.R. Henderson's Ph.D. thesis(1971), whose advisor is Herbert John Ryser. At around the same time Lovász independently conjectured a stronger statement.

Equality Can Hold

Proposition (Tuza, 1983)

When $r-1$ is a power of prime then the number $r-1$ in the inequality is the sharpest.

Equality Can Hold

Proposition (Tuza, 1983)

When $r-1$ is a power of prime then the number $r-1$ in the inequality is the sharpest.

Proof.

(Sketch) Consider a projective plane with order $r-1$. Delete one vertex and all edges containing it, the remaining vertices of these edges form a partition. And all remaining edges form an r-partite hypergraph \mathcal{H} with $\nu(\mathcal{H})=1$ and $\tau(\mathcal{H})=r-1$.

Progress on Main Conjecture

$r=2$, the inequality is König's Theorem.

Progress on Main Conjecture

$r=2$, the inequality is König's Theorem.

Theorem (Aharoni, 2001)

\mathcal{H} is a 3-partite hypergraph. Then

$$
\tau(\mathcal{H}) \leq 2 \nu(\mathcal{H})
$$

Progress on Main Conjecture

$r=2$, the inequality is König's Theorem.

Theorem (Aharoni, 2001)

\mathcal{H} is a 3-partite hypergraph. Then

$$
\tau(\mathcal{H}) \leq 2 \nu(\mathcal{H})
$$

Ryser's conjecture remains open for $r \geq 4$.

Progress on Main Conjecture

Theorem (Haxell \& Scott, 2012)

For $r=4$ and $r=5$ if \mathcal{H} is an r-partite hypergraph. Then there exists $\epsilon>0$ such that

$$
\tau(\mathcal{H}) \leq(r-\epsilon) \nu(\mathcal{H}) .
$$

Intersecting Case

We could consider one particular case of the main conjecture, when

$$
\nu(\mathcal{H})=1
$$

Then the pairwise intersection of edges are nonempty. And \mathcal{H} is called intersecting. So we refer to this case of the main conjecture as intersecting case.

Intersecting Case

We could consider one particular case of the main conjecture, when

$$
\nu(\mathcal{H})=1
$$

Then the pairwise intersection of edges are nonempty. And \mathcal{H} is called intersecting. So we refer to this case of the main conjecture as intersecting case.

Conjecture (Intersecting Case)
\mathcal{H} is an r-partite intersecting hypergraph. Then

$$
\tau(\mathcal{H}) \leq r-1
$$

Progress on Intersecting Case

Theorem (Tuza, 1978, unpublished)
 The intersecting Ryser's conjecture is true for $r=4,5$.

Progress on Intersecting Case

Theorem (Tuza, 1978, unpublished)
 The intersecting Ryser's conjecture is true for $r=4,5$.

The intersecting case remains open for $r \geq 6$.

Examples with Small Number of Edges

The truncated projective plane examples are not very satisfactory because

Examples with Small Number of Edges

The truncated projective plane examples are not very satisfactory because

- they are not available for many r;

Examples with Small Number of Edges

The truncated projective plane examples are not very satisfactory because

- they are not available for many r;
- they contain too many edges.

Examples with Small Number of Edges

The truncated projective plane examples are not very satisfactory because

- they are not available for many r;
- they contain too many edges.

Mansour, Song and Yuster introduced the following definition:

Definition

For integers $r \geq 2$, let $f(r)$ be the smallest number of edges of any r-partite intersecting hypergraph with $\tau(\mathcal{H}) \geq r-1$.

Examples of $f(r)$ When r is Small

Proposition

$$
f(3)=3 .
$$

Examples of $f(r)$ When r is Small

Proposition

$$
f(3)=3 .
$$

Theorem (Mansour et al., 2009)

$$
f(4)=6, f(5)=9,12 \leq f(6) \leq 15 .
$$

Examples of $f(r)$ When r is Small

Proposition

$$
f(3)=3 .
$$

Theorem (Mansour et al., 2009)

$$
f(4)=6, f(5)=9,12 \leq f(6) \leq 15 .
$$

Theorem (Lin, 2013, unpublished)

$$
f(6)=13 .
$$

A 6-partite intersecting hypergraph \mathcal{H} with 13 edges and $\tau(\mathcal{H})=5$

Let $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}$ be the six subsets of V, then each of them gives a partition of the edges, based on which vertex of the subset is contained by one edge. Each small subset corresponds to one vertex.

A 6-partite intersecting hypergraph \mathcal{H} with 13 edges and $\tau(\mathcal{H})=5$

Let $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}$ be the six subsets of V, then each of them gives a partition of the edges, based on which vertex of the subset is contained by one edge. Each small subset corresponds to one vertex.

V_{1}	$\{1,2,3,4\}$	$\{7,9, \mathrm{~J}, \mathrm{Q}\}$	$\{8, \mathrm{~K}\}$	$\{6,10\}$	$\{5\}$
V_{2}	$\{1,5,6,7\}$	$\{10,3, \mathrm{~J}, \mathrm{~K}\}$	$\{2, \mathrm{Q}\}$	$\{9,4\}$	$\{8\}$
V_{3}	$\{1,8,9,10\}$	$\{4,6, \mathrm{Q}, \mathrm{K}\}$	$\{5, \mathrm{~J}\}$	$\{3,7\}$	$\{2\}$
V_{4}	$\{2,8,6, \mathrm{~J}\}$	$\{4,10,5, \mathrm{Q}\}$	$\{1, \mathrm{~K}\}$	$\{3,9\}$	$\{7\}$
V_{5}	$\{5,8,3, \mathrm{Q}\}$	$\{7,10,2, \mathrm{~K}\}$	$\{1, \mathrm{~J}\}$	$\{6,9\}$	$\{4\}$
V_{6}	$\{2,5,9, \mathrm{~K}\}$	$\{4,7,8, \mathrm{~J}\}$	$\{1, \mathrm{Q}\}$	$\{3,6\}$	$\{10\}$

A 6-partite intersecting hypergraph \mathcal{H} with 13 edges and $\tau(\mathcal{H})=5$

Let $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}$ be the six subsets of V, then each of them gives a partition of the edges, based on which vertex of the subset is contained by one edge. Each small subset corresponds to one vertex.

V_{1}	$\{1,2,3,4\}$	$\{7,9, \mathrm{~J}, \mathrm{Q}\}$	$\{8, \mathrm{~K}\}$	$\{6,10\}$	$\{5\}$
V_{2}	$\{1,5,6,7\}$	$\{10,3, \mathrm{~J}, \mathrm{~K}\}$	$\{2, \mathrm{Q}\}$	$\{9,4\}$	$\{8\}$
V_{3}	$\{1,8,9,10\}$	$\{4,6, \mathrm{Q}, \mathrm{K}\}$	$\{5, \mathrm{~J}\}$	$\{3,7\}$	$\{2\}$
V_{4}	$\{2,8,6, \mathrm{~J}\}$	$\{4,10,5, \mathrm{Q}\}$	$\{1, \mathrm{~K}\}$	$\{3,9\}$	$\{7\}$
V_{5}	$\{5,8,3, \mathrm{Q}\}$	$\{7,10,2, \mathrm{~K}\}$	$\{1, \mathrm{~J}\}$	$\{6,9\}$	$\{4\}$
V_{6}	$\{2,5,9, \mathrm{~K}\}$	$\{4,7,8, \mathrm{~J}\}$	$\{1, \mathrm{Q}\}$	$\{3,6\}$	$\{10\}$

To verify this example,

- (intersecting) Every pair of edges is contained by at least one small subset.
- $(\nu(\mathcal{H})>4)$ The union of any 4 small subsets is not E.

The Order of $f(r)$

From those examples it seems that $f(r)$ would be linear in r instead of quadratic.

The Order of $f(r)$

From those examples it seems that $f(r)$ would be linear in r instead of quadratic.

Theorem (Mansour et al., 2009)

$$
f(r) \geq\left(3-\frac{1}{\sqrt{18}}\right) r(1-o(1)) \approx 2.764 r(1-o(1))
$$

The Order of $f(r)$

From those examples it seems that $f(r)$ would be linear in r instead of quadratic.

Theorem (Mansour et al., 2009)

$$
f(r) \geq\left(3-\frac{1}{\sqrt{18}}\right) r(1-o(1)) \approx 2.764 r(1-o(1))
$$

Conjecture (Mansour et al., 2009)

$$
f(r)=\Theta(r) .
$$

The End

Thank you!

