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Hypergraph

Hypergraphs are generalization of graphs where each edge could
connect more than 2 vertices.

Definition

A hypergraph H is a pair (V,E), where V is a set of vertices
and E is a family of subsets of V . Those subsets in E are called
edges of H.
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Examples of Hypergraphs

Example (H1)

V = {v1, v2, v3, v4, v5}
E = {{v1, v2, v3}, {v1, v4, v5}, {v2, v3, v4, v5}}.

Example (H2,Fano Plane)

7 vertices, 7 edges.
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Uniform and Partite Hypergraphs

Definition

A hypergraph H is r-uniform if all of its edges have r vertices.

Definition

A hypergraph H = (V,E) is r-partite if V admits a partition
V =

⋃r
i=1 Vi such that for e ∈ E and 1 ≤ i ≤ r, |e ∩ Vi| = 1.
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Examples of Hypergraphs

Example (H3 = Kn,n,n)

The complete 3-partite hypergraph Kn,n,n.
V = {A1, · · · , An, B1, · · · , Bn, C1, · · · , Cn},
E = {{Ai, Bj , Ck}|1 ≤ i, j, k ≤ n}.
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Matching Number

Definition

A matching of hypergraph H is a set of pairwisely disjoint edges
of H. The matching number ν(H) is the maximal cardinality of
a matching of H.

Examples:

ν(H2) = 1.

ν(H3) = n.
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Covering Number

Definition

A cover (or transversal) of hypergraph H is a subset W of V
such that all edges intersect W . The covering number τ(H) is
the minimal cardinality of a covering of H.

Examples:

τ(H2) = 3.

τ(H3) = n.
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Trivial Estimate

Proposition

H is an r-partite hypergraph. Then

ν(H) ≤ τ(H) ≤ rν(H).
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Main Conjecture

Conjecture (Ryser)

H is an r-partite hypergraph. Then

τ(H) ≤ (r − 1)ν(H).

Remark

This conjecture first appeared in J.R. Henderson’s Ph.D.
thesis(1971), whose advisor is Herbert John Ryser. At around
the same time Lovász independently conjectured a stronger
statement.
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Equality Can Hold

Proposition (Tuza, 1983)

When r − 1 is a power of prime then the number r − 1 in the
inequality is the sharpest.

Proof.

(Sketch) Consider a projective plane with order r − 1. Delete
one vertex and all edges containing it, the remaining vertices of
these edges form a partition. And all remaining edges form an
r-partite hypergraph H with ν(H) = 1 and τ(H) = r − 1.
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Progress on Main Conjecture

r = 2, the inequality is König’s Theorem.

Theorem (Aharoni, 2001)

H is a 3-partite hypergraph. Then

τ(H) ≤ 2ν(H).

Ryser’s conjecture remains open for r ≥ 4.
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Progress on Main Conjecture

Theorem (Haxell & Scott, 2012)

For r = 4 and r = 5 if H is an r-partite hypergraph. Then there
exists ε > 0 such that

τ(H) ≤ (r − ε)ν(H).
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Intersecting Case

We could consider one particular case of the main conjecture,
when

ν(H) = 1.

Then the pairwise intersection of edges are nonempty. And H is
called intersecting. So we refer to this case of the main
conjecture as intersecting case.

Conjecture (Intersecting Case)

H is an r-partite intersecting hypergraph. Then

τ(H) ≤ r − 1.
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Progress on Intersecting Case

Theorem (Tuza, 1978, unpublished)

The intersecting Ryser’s conjecture is true for r = 4, 5.

The intersecting case remains open for r ≥ 6.
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Examples with Small Number of Edges

The truncated projective plane examples are not very
satisfactory because

they are not available for many r;

they contain too many edges.

Mansour, Song and Yuster introduced the following definition:

Definition

For integers r ≥ 2, let f(r) be the smallest number of edges of
any r-partite intersecting hypergraph with τ(H) ≥ r − 1.
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Examples of f(r) When r is Small

Proposition

f(3) = 3.

Theorem (Mansour et al., 2009)

f(4) = 6, f(5) = 9, 12 ≤ f(6) ≤ 15.

Theorem (Lin, 2013, unpublished)

f(6) = 13.
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A 6-partite intersecting hypergraph H with 13 edges
and τ(H) = 5

Let V1, V2, V3, V4, V5, V6 be the six subsets of V , then each of
them gives a partition of the edges, based on which vertex of
the subset is contained by one edge. Each small subset
corresponds to one vertex.

V1 {1,2,3,4} {7,9,J,Q} {8,K} {6,10} {5}
V2 {1,5,6,7} {10,3,J,K} {2,Q} {9,4} {8}
V3 {1,8,9,10} {4,6,Q,K} {5,J} {3,7} {2}
V4 {2,8,6,J} {4,10,5,Q} {1,K} {3,9} {7}
V5 {5,8,3,Q} {7,10,2,K} {1,J} {6,9} {4}
V6 {2,5,9,K} {4,7,8,J} {1,Q} {3,6} {10}

To verify this example,

(intersecting) Every pair of edges is contained by at least
one small subset.

(ν(H) > 4) The union of any 4 small subsets is not E.
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The Order of f(r)

From those examples it seems that f(r) would be linear in r
instead of quadratic.

Theorem (Mansour et al., 2009)

f(r) ≥ (3− 1√
18

)r(1− o(1)) ≈ 2.764r(1− o(1)).

Conjecture (Mansour et al., 2009)

f(r) = Θ(r).
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The End

Thank you!
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