1 Change of Basis

1.1 Change of Basis in \mathbb{R}^n

Let $b_1 = \begin{pmatrix} -9 \\ 1 \end{pmatrix}$, $b_2 = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$, $c_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$, $c_2 = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$. Find $P_{c \to b}$.

\[
\begin{pmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & -9 & -5 \\ 0 & 7 & -35 & -21 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & -9 & -5 \\ 0 & 1 & -5 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{pmatrix}.
\]

Hence, $P_{c \to b} = \begin{pmatrix} 6 & 4 \\ 5 & -3 \end{pmatrix}$.

1.2 Change of Basis in \mathbb{P}_n

Let $B = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$ in \mathbb{P}_2. Find the change-of-coordinates matrix from the basis B to the standard basis. Then write t^2 as a linear combination of the polynomials in B.

\[
\begin{align*}
\int -3t^2 &= 1 \cdot 1 + 0 \cdot t + (-3) t^2 \Rightarrow \text{first column} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \\
2 + t - 5t^2 &= 2 \cdot 1 + (1) t + (-5) t^2 \Rightarrow \text{second column} = \begin{pmatrix} 2 \\ -5 \end{pmatrix} \\
1 + 2t &= 1 \cdot 1 + 2 \cdot t + 0 \cdot t^2 \Rightarrow \text{third column} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\end{align*}
\]

We need to read t^2 using B.

\[
\begin{align*}
\left[t^2 \right]_B &= \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \\
P_{c \to b} \cdot \left[t^2 \right]_B &= \begin{pmatrix} 1 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \\ -2 \\ 0 \end{pmatrix} \\
&= \begin{pmatrix} 10 & -5 & 3 \\ -6 & 3 & -2 \\ -2 & 1 \end{pmatrix}
\end{align*}
\]

The standard basis for \mathbb{P}_2 is $\{1, t, t^2\}$.

2 Eigenvalues and Eigenvectors

From now on, we will only discuss about square matrices. Let A be an $n \times n$ matrix. Assume that there exists a real number λ such that

\[
\det(A - \lambda I) = 0.
\]

We call such a real number as an eigenvalue of A. If you remind the Invertible Matrix Theorem, it implies that $\text{Nul}(A - \lambda I)$ is not the zero space. Every nonzero vector $v \in \text{Nul}(A - \lambda I)$ is called an eigenvector.
1. If A is a 7×5 matrix, what is the largest possible rank of A? If A is a 5×7 matrix, what is the largest possible rank of A? Explain your answers.

5 and 5. From 2.9, we know that $\text{rank } A = \dim \text{Row } A = \dim \text{Col } A$. Hence, these maximal dimensions are 5.

2. Mark each statement True or False. Justify your answer.

a. The dimensions of the row space and the column space of A are the same, even if A is not square.

True. Because of 2.9, row operations do not change linear dependence relation among the rows of A.

b. If B is the reduced echelon form of A, and if B has three nonzero rows, then the first three rows of A form a basis for Row A.

True. Because of 2.6, row operations preserve the linear dependence relations among the rows of A.

c. Row operations preserve the linear dependence relations among the rows of A.

True. In class, we did.

d. If A and B are row equivalent, then their row spaces are the same.

True. Row operations do not change the space.

3. Suppose A is $m \times n$ and b is in \mathbb{R}^m. What has to be true about the two numbers $\text{rank } (A \ b)$ and $\text{rank } A$ in order for the equation $Ax = b$ to be consistent?

\[\text{rank } (A \ b) = \text{rank } A. \]

4. a. Is $\lambda = 2$ an eigenvalue of \(\begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix} \)?

\[\det \left(\begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right) = \det \left(\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \right) = 0 \quad \Rightarrow \quad \lambda = 2 \text{ is an eigenvalue of } \begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix}. \]

b. Is \(\begin{pmatrix} -1 \\ 1 \end{pmatrix} \) an eigenvector of \(\begin{pmatrix} 5 & 2 \\ 3 & 6 \end{pmatrix} \)? If so, find the eigenvalue.

\[\begin{pmatrix} 5 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \Rightarrow \quad \text{It is true and the eigenvalue is } 3. \]

c. Is \(\begin{pmatrix} 1 \\ -2 \end{pmatrix} \) an eigenvector of \(\begin{pmatrix} 3 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4 \end{pmatrix} \)? If so, find the eigenvalue.

\[\begin{pmatrix} 3 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 13 \\ 1 \end{pmatrix} \neq \text{not a multiple of } \begin{pmatrix} -2 \\ 2 \end{pmatrix}. \quad \text{It is NOT true.} \]
5. Let \(\lambda \) be an eigenvalue of an invertible matrix \(A \). Show that \(\lambda^{-1} \) is an eigenvalue of \(A^{-1} \).

\[
(A^{-1} - \lambda I) \cdot \lambda A = (A I - A) \cdot \lambda A
\]

Therefore, \(\det(A^{-1} - \lambda I) = \det((A I - A) \cdot \lambda A) = \det(A I - A) \cdot \det(\lambda A) = 0 \). Therefore, \(\lambda^{-1} \) is an eigenvalue of \(A^{-1} \).

6. Show that if \(A^2 \) is the zero matrix, then the only eigenvalue of \(A \) is 0.

Suppose that \(Au = \lambda u \) for some scalar \(\lambda \) and \(u \) vector.

Multiplying \(A \) on both sides of each side,

\(0 = 0 \cdot u = A^2 u = \lambda A u = \lambda(A u) = \lambda^2 u \).

Hence, \(\lambda^2 = 0 \Rightarrow \lambda = 0 \).

7. Show that \(\lambda \) is an eigenvalue of \(A \) if and only if \(\lambda \) is an eigenvalue of \(A^T \).

\[
\det(A - \lambda I) = \det((A - \lambda I)^T) = \det(A^T - \lambda I)
\]

8. Let \(A \) be an \(n \times n \) matrix. Mark each statement True or False. Justify your answer.

a. If \(Ax = \lambda x \) for some vector \(x \), then \(\lambda \) is an eigenvalue of \(A \).

False. \(x \) should not be the zero vector.

b. A number \(c \) is an eigenvalue of \(A \) if and only if the equation \((A - cI)x = 0 \) has a nontrivial solution.

True. \(Bx = 0 \) has a nontrivial sol'n if and only if \(\det B = 0 \).

c. If \(v_1 \) and \(v_2 \) are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

False. Counterexample. \((1, 0)\); \((1, 0)\) are eigenvectors and they are linearly independent, but have the same eigenvalue.

9. Construct an example of a \(2 \times 2 \) matrix with only one distinct eigenvalue.

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

has only one distinct eigenvalue \(\lambda = 1 \).