Quiz 13 (Last) (30mins, 40pts)

Please write down your name, SID, and solutions discernably.

Name :
SID :
Score :

1. (10pts) Evaluate the surface integral.

\[\int \int_{S} x^2 z^2 \, dS, \]

\(S \) is the part of the cone \(z^2 = x^2 + y^2 \) that lies between the planes \(z = 1 \) and \(z = 3 \).

2. (10pts) Find the flux of

\[\mathbf{F}(x, y, z) = xz \mathbf{i} + x \mathbf{j} + y \mathbf{k} \]

across the hemisphere \(x^2 + y^2 + z^2 = 25, \ y \geq 0 \), oriented in the direction of the positive \(y \)-axis.
3. (10pts) Use Stokes’ Theorem to evaluate \(\iint_S \text{curl} \, \mathbf{F} \cdot \mathbf{n} \, dS \), where \(\mathbf{F}(x, y, z) = x^2yz \mathbf{i} + yz^2 \mathbf{j} + z^3e^{xy} \mathbf{k} \), \(S \) is the part of the sphere \(x^2 + y^2 + z^2 = 5 \) that lies above the plane \(z = 1 \), and \(S \) is oriented upward.

4. (10pts) Use Stokes’ Theorem to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k} \), where \(C \) is the circle which is the intersection of \(z = 1 - x^2 - y^2 \) and \(xy \)-plane, oriented counterclockwise as viewed from above.