1. Use the Chain Rule to find dz/dt for a) and $\partial z/\partial s$, $\partial z/\partial t$ for b).

a) $z = \frac{x^3 - x \ln y + y}{\sin y}, \quad x = e^t, \quad y = t^2$

Answer. $\frac{e^t(3e^{2t} - 2 \ln t)}{\sin(t^2)} + 2t \frac{\sin(t^2)(1 - \frac{e^t}{t^2}) - \cos(t^2)(e^{3t} - 2e^t \ln t + t^2)}{\sin^2(t^2)}$

b) $z = x \sin \theta, \quad x = \frac{s}{t}, \quad \theta = s^2 + t$

Answer. $\frac{\partial z}{\partial s} = \frac{1}{t} \sin(s^2 + t) + \frac{2s^2}{t} \cos(s^2 + t)$

$\frac{\partial z}{\partial t} = -\frac{s}{t^2} \sin(s^2 + t) + \frac{s}{t} \cos(s^2 + t)$

2. Find dy/dx for a) and $\partial z/\partial x$, $\partial z/\partial y$ for b) and c).

a) $x^2 + \sin x \sin y - y^2 = 0$

Solution. Using the formula for implicit differentiation

$$\frac{dy}{dx} = -\frac{F_x}{F_y},$$

we get the answer.

Answer. $\frac{dy}{dx} = 2x + \cos x \sin y \quad 2y - \sin x \cos y$

b) $x + y^2 + z^3 = 0$

Solution. Using the formula for implicit differentiation

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \quad \& \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z},$$

we get the answer.

Answer. $\frac{\partial z}{\partial x} = -\frac{1}{3z^2}, \quad \frac{\partial z}{\partial y} = \frac{2y}{3z^2}$
c) \(\tan x + e^y + z^3 - z^2 = 0 \)

Solution. Same as before.

Answer. \(\frac{\partial z}{\partial x} = -\frac{1}{z(3z - 2) \cos^2 x}, \quad \frac{\partial z}{\partial y} = -\frac{e^y}{z(3z - 2)} \)

3. Find the gradient of \(f \), evaluate the gradient at the point \(P \), and find the rate of change of \(f \) at \(P \) in the direction of the vector \(u \).

\[
f(x, y, z) = \cos(x^2) + xy + \ln z, \quad P = (\pi, 1, e) \quad u = \left\langle \frac{1}{9}, -\frac{8}{9}, \frac{4}{9} \right\rangle
\]

Solution. The gradient of \(f \) is defined as following :

\[
\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right).
\]

Hence, in this problem, \(\nabla f = (-2x \sin(x^2) + y, x, \frac{1}{z}) \). At the point \(P \),

\[
\nabla f(P) = (-2\pi \sin(\pi^2) + 1, \pi, \frac{1}{e}).
\]

The rate of change of \(f \) at \(P \) in the direction of the vector \(u \) is given as

\[
\nabla f(P) \cdot u = \frac{1}{9} \left(-2\pi \sin(\pi^2) + 1 - 8\pi + \frac{4}{e} \right).
\]

Answer. Answers are listed in the **Solution.**

Letter grade for Quiz 6

\[
\begin{array}{ll}
A^+ = 20 & (6) \\
A0 = 19 & (6) \\
B^+ = 18 & (9) \\
B0 = 16, 17 & (6) \\
C^+ = .. & (2)
\end{array}
\]