1. Find the length of the curve.
 a) \(\mathbf{r}(t) = (t, \sin(3t^2), \cos(3t^2)) \)
 b) \(\mathbf{r}(t) = (\cos 4t, \sin 4t, t) \)
 c) \(\mathbf{r}(t) = 2t\mathbf{i} + t^2\mathbf{j} + \ln t\mathbf{k} \)
 for \(0 \leq t \leq 1 \)
 for \(0 \leq t \leq 1 \)
 for \(1 \leq t \leq 3 \)

2. Let \(C \) be the curve of intersection of the parabolic cylinder \(48z = x^2 \) and the surface \(9y^2 = 16xz \). Find the exact length of \(C \) from the origin to the point \((48, 64, 48)\).

3. Find the limit, if it exists, or show that the limit does not exist.
 a) \(\lim_{(x,y) \to (0,0)} \frac{x^2 + xy + y^2}{xy} \)
 b) \(\lim_{(x,y) \to (1,-1)} e^{-xy} \cos(x + y) \)
 c) \(\lim_{(x,y) \to (0,0)} \frac{5y^4 \cos^2 x}{x^4 + y^4} \)
 d) \(\lim_{(x,y) \to (1,0)} \frac{xy - y}{(x - 1)^2 + y^2} \)
 e) \(\lim_{(x,y) \to (0,0)} \frac{xy^4}{x^2 + y^8} \)

4. Determine the set of points at which the function is continuous.
 a) \(f(x, y) = \frac{1 + x^2 + y^2}{1 - x^2 - y^2} \)
 b) \(f(x, y) = \begin{cases}
 \frac{x^2y^3}{2x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\
 1 & \text{if } (x, y) = (0, 0)
 \end{cases} \)

Course Homework due Feb 19, Wed.
Feb 10, Mon. : 13.2 45, 47, 49, 50. 13.3 1, 3, 5, 11
Feb 12, Wed. : 14.1 23, 27, 29, 30, 32, 55-60 (total 6 problems)
Feb 14, Fri. : 14.2 1, 5, 9, 13, 17, 19, 29, 33

1