1. Use Green’s Theorem to evaluate the line integral along the given positively oriented curve.

\[\int_C \cos y \, dx + x^2 \sin y \, dy, \]

where \(C \) is the rectangle with vertices \((0,0), (5,0), (5,2), \) and \((0,2)\).

2. Use Green’s Theorem to evaluate \(\int_C \mathbf{F} \cdot dr \).

\[\mathbf{F}(x,y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle, \]

\(C \) consists of the arc of the curve \(y = \cos x \) from \((-\pi/2, 0)\) to \((\pi/2, 0)\) and the line segment from \((\pi/2, 0)\) to \((-\pi/2, 0)\).

3. Let \(D \) be a region bounded by a simple closed path \(C \) in the \(xy \)-plane. Use Green’s Theorem to prove that the coordinates of the centroid \((\bar{x}, \bar{y})\) of \(D \) are

\[\bar{x} = \frac{1}{2A} \oint_C x^2 \, dy \quad \bar{y} = -\frac{1}{2A} \oint_C y^2 \, dx \]

where \(A \) is the area of \(D \).
4. Find the curl and the divergence of the vector field.

\[\mathbf{F}(x, y, z) = e^{xy} \sin z \mathbf{j} + y \tan^{-1}(x/z) \mathbf{k} \]

5. Determine whether or not the vector field is conservative. If it is conservative, find a function \(f \) such that \(\mathbf{F} = \nabla f \).

\[\mathbf{F}(x, y, z) = e^{yz} \mathbf{i} + xze^{yz} \mathbf{j} + ye^{yz} \mathbf{k} \]

\[\mathbf{F}(x, y, z) = \mathbf{i} + \sin z \mathbf{j} + y \cos z \mathbf{k} \]