Math 1B: Calculus Discussion Section 2

WORKSHEET 6

Prove (make an argument!) that following series are absolutely convergent, conditionally convergent, or divergent.
(a)

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{3}}\right)^{\pi / n+n^{2}}
$$

(b)

$$
\sum_{n=0}^{\infty}\left(\frac{2-3 \sin (n)}{6}\right)^{n}
$$

(c)

$$
\sum_{n=0}^{\infty}\left(\frac{n}{n+3}\right)^{n^{2}}
$$

(d)

$$
\sum_{n=0}^{\infty}(\sqrt[n]{2}-1)
$$

(e)

$$
\sum_{n=1}^{\infty}(-1)^{n}\left(\sin \left(\frac{1}{n}\right)\right)^{1 / 3}
$$

(f)

$$
\sum_{n=0}^{\infty}\left(\frac{1}{1+3 \cdot(-1)^{n}}\right)^{n}
$$

Classifying Tests for Convergence and Divergence

Test name	Example of series to test	Conditions on series to be tested	Conclusions you can draw from this test
p-Series			
Geometric Series			
Comparison			
Ratio			
Root			
Alternating Series			

Prepared by ANNA LIEB. Comments and questions: lieb@math.berkeley.edu

