Math 1B: Calculus Discussion Section 2

WORKSHEET 2

Super Duper Useful Trigonometric Identities You Should Memorize

$$
\begin{align*}
1 & =\sin ^{2}(x)+\cos ^{2}(x) \tag{1}\\
\sin (a+b) & =\sin (a) \cos (b)+\cos (a) \sin (b) \tag{2}\\
\cos (a+b) & =\cos (a) \cos (b)-\sin (a) \sin (b) \tag{3}
\end{align*}
$$

1. Using the equations you have just committed to memory, deduce the following identities:

$$
\begin{aligned}
\sin (2 x) & =2 \sin (x) \cos (x) \\
\sec ^{2}(x) & =1+\tan ^{2}(x) \\
\sin ^{2}(x) & =\frac{1}{2}(1-\cos (2 x)) \\
\cos ^{2}(x) & =\frac{1}{2}(1+\cos (2 x)) \\
\sin (a) \sin (b) & =\frac{1}{2}(\cos (a-b)-\cos (a+b)) \\
\sin (a) \cos (b) & =\frac{1}{2}(\sin (a-b)+\sin (a+b)) \\
\cos (a) \cos (b) & =\frac{1}{2}(\cos (a+b)+\cos (a-b))
\end{aligned}
$$

2. The time it takes for a beam of light to travel around a star in curved Schwarzchild spacetime is given by:

$$
t=\int \frac{r}{\sqrt{r^{2}-1}}\left(1+\frac{2 M}{r}-\frac{M}{r^{3}}\right) d r
$$

where M is the mass of the star and $r>1 .{ }^{1}$ Write this integral as the sum of three different integrals and solve them. Hint: if you are flummoxed by terms of the form $\sqrt{r^{2}-1}$, first do the substitution $u=1 / r$ to get it in a form amenable to trig substitutions.
3. Suppose two particles move with velocities given respectively by the functions

$$
\begin{aligned}
& v_{1}(t)=\sin (4 t) \cos (t) \\
& v_{2}(t)=\sin (6 t) \sin (3 t)
\end{aligned}
$$

Assume that the particles both start at the origin and find the positions $x_{1}(t)$ and $x_{2}(t)$ of each particle as a function of time. Can you draw the path of each particle? At $t=6.3$, which is farthest away from the origin? (No, you don't need a calculator... think about it in terms of multiples of π...)

[^0]
[^0]: ${ }^{1}$ This effect is called the Shapiro time delay and is a result of the fact that light "falls" in a gravitational field.

