Series Manipulations

Here's a (partial) list of some manipulations you can perform on series and what they modify

- Re-indexing
- Changes: starting place, form of a_{n}
- Doesn't change: value
- Reminders: Don't forget about "hidden" parentheses around each n. When you decrease the starting place, you have to increase every n in a_{n} by the same amount.
- Example: $\sum_{n=3}^{\infty} \frac{n x^{2 n+1}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(n+3) x^{2(n+3)+1}}{(2(n+3))!}=\sum_{n=0}^{\infty} \frac{(n+3) x^{2 n+7}}{(2 n+6)!}$
- Factoring in/out of the \sum
- Changes: form of a_{n}
- Doesn't change: starting place, value
- Reminders: You can only factor out things that don't involve an n. However, as far as the sum is concerned, x is a constant and can be moved in/out.
- Example: $\frac{1}{8} \sum_{n=0}^{\infty} n^{2} \frac{x^{n+2}}{2^{2 n-3}}=x^{2} \sum_{n=0}^{\infty} n^{2} \frac{x^{n}}{2^{2 n}}=x^{2} \sum_{n=0}^{\infty} n^{2}\left(\frac{x}{4}\right)^{n}$
- Adding/subtracting missing terms
- Changes: starting place
- Doesn't change: form of a_{n}, value
- Reminders: Make sure you remember all the extra terms and that $x^{0}=0!=1$
- Example: $\sum_{n=4}^{\infty} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}-\sum_{n=0}^{3} \frac{x^{n}}{n!}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)-\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right)$

Finding Sums

Finding sums of series is somewhat of an art, but here's a general outline of the procedure I use when I'm stuck:

1. Figure out which known series you're aiming for. The denominator is usually a good indication, but this is definitely where the "art" comes in. If there's a factorial in the denominator, I'd start with whatever series matches that.
2. Figure out what your "x" is going to be. Numbers raised to an n are probably going to end up being part of the x you plug in at the end. Depending on your which known Maclaurin Series you're using, sometimes this includes the $(-1)^{n}$ part and sometimes it doesn't.
3. Figure out how to get from the known series to the one you have. Here's some tricks:

- An extra n terms in the numerator usually comes from a derivative of $x^{n}, x^{2 n}, x^{2 n+1}$, etc.
- Extra n terms in a denomintor usually come from integrals
- If your series starts in the wrong place, but you like the form of a_{n}, use the third manipulation from above to fix it
- Don't forget about your exponent laws: $\sum x^{3 n+2}=x^{2} \sum\left(x^{3}\right)^{n}$
- One thing that's helpful is to learn to think relatively. For example, if you see $(n+1) x^{n}$, you should think of this as "a power of x multiplied by the number one bigger than the exponent," which is $\left(x^{n+1}\right)^{\prime}$

4. Start with the known series from the Maclaurin Series sheet and its function equivalent and perform the manipulations from step 2 to both sides. A few more tricks:

- If you have an x^{n-1} but want to make an n show up, you can multiply both sides by x and then take the derivative. Similar tricks work for denominators from integrals.
- Make sure you do things in the appropriate order to both sides! Multiplying by x and then differentiating is very different then differentiating and then multiplying by x.
- If you ever integrate, remember to include a $+C$ and then solve for it.

5. Plug in the appropriate value of x into both sides.
