Math 128B: Quiz 2 Solutions

Useful facts:
$\cos (a) \cos (b)=\frac{1}{2}(\cos (a+b)+\cos (a-b))$
$2^{15} \approx 32000$

1. (Chebyshev Polynomias) Use the definition of the $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x)=\cos (n \arccos (x))$ to find an expression for the product $T_{i}(x) T_{j}(x)$ which has no products of Chebyshev polynomials. Solution Using the trig formula we find
$T_{i}(x) T_{j}(x)=\cos (i \arccos (x)) \cos (j \arccos (x))=\frac{1}{2}[\cos ((i+j) \arccos (x))+\cos ((i-j) \arccos (x))]$
Since $\cos (x)$ is an even function we have

$$
T_{i}(x) T_{j}(x)=\frac{1}{2}\left(T_{i+j}(x)+T_{|i-j|}(x)\right)
$$

2. (Fourier Series)
(a) Find the coefficients in the general continuous least-squares polynomial $S_{n}(x)$ defined as

$$
\begin{gathered}
S_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos (k x)+b_{k} \sin (k x) \\
f(x)= \begin{cases}1, & \text { if }-\pi<x \leq 0 \\
0 & \text { if } 0<x \leq \pi\end{cases}
\end{gathered}
$$

The coefficients are given by

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (k x) f(x) d x, \quad k=0,1, \ldots \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (k x) f(x) d x, \quad k=1,2 \ldots
\end{aligned}
$$

Plugging in, we find

$$
\begin{gathered}
a_{0}=1, \quad a_{k}=\frac{1}{\pi} \int_{-\pi}^{0} \cos (k x) d x=\left.\frac{1}{k \pi} \sin (k \pi)\right|_{-\pi} ^{0}=0, \quad k \geq 1 \\
b_{k}=\int_{-\pi}^{0} \sin (k \pi) d x=-\left.\frac{1}{k \pi} \cos (k \pi)\right|_{-\pi} ^{0}= \begin{cases}-\frac{2}{k \pi} & k \text { odd } \\
0 & \text { even }\end{cases}
\end{gathered}
$$

Continued on other side

(b) Suppose you want to compute the Fourier coefficients for data on a grid with thirty two thousand $\left(3.2 \times 10^{4}\right)$ points. Estimate the order of magnitude (yes, you can do this without a calculator) of the number of calculations you must perform to do this
(i) with a direct method
(ii) via FFT.
(i) $\mathcal{O}(2 n)^{2} \approx\left(6 \times 10^{4}\right)^{2}=36 \times 10^{8}=3.6 \times 10^{9}:$ order $10^{9}(1$ billion $)$
(ii) $\mathcal{O}(n \log (n)) \approx 3 \times 10^{4} \times 15=4.5 \times 10^{5}$ order: 10^{5} (ten thousand times less effort!).

Figure 1: http://xkcd.com/26/
3. Bonus: Draw an FFT of yourself.

Prepared by ANNA LIEB. Comments and questions: lieb@ math.berkeley.edu

