Math 1B: Calculus Discussion Section 2 Quiz 10 Solutions

1. Find a general solution for
(a) (2 points) $y^{\prime}+y=\cos \left(e^{x}\right)$

Use integrating factor $I(x)=e^{x}$. Then

$$
\frac{d}{d x}\left(e^{x} y\right)=e^{x} \cos \left(e^{x}\right)
$$

So we integrate:

$$
e^{x} y(x)=\int e^{x} \cos \left(e^{x}\right) d x
$$

using the substitution $u=e^{x}$ we find

$$
\begin{array}{r}
e^{x} y(x)=\sin \left(e^{x}\right)+c \\
y(x)=e^{-x} \sin \left(e^{x}\right)+c e^{-x}
\end{array}
$$

(b) (2 points) $y^{\prime \prime}=3 y^{\prime}$

This is a second order homogenous linear constant coefficient equation, so try a solution of the form $y=e^{r x}$. The equation r must satisfy is $r^{2}-3 r=0$, so the solutions are $r=0, r=3$. The general solution is

$$
y(x)=c_{1}+c_{2} e^{3 x}
$$

(c) (2 points) $2 y^{\prime \prime}+2 y^{\prime}+y=0$

As above, we seek a solution of the form $e^{r x}$. So r must satisfy $2 r^{2}+2 r+1=0$ Which we solve using the quadradtic formula to find that $r=1 \pm 2 i$ so the general solution is

$$
y(x)=e^{-x / 2}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

2. (2 points) Determine a solution to the boundary value problem

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+4 y=0, \quad y(0)=1, \quad y(1)=0
$$

or explain why such a solution does not exist.
The characteristic equation has a double root at $r=2$. Hence the general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

At $x=0$, we apply the boundary condition to find that $y(1)=c_{1}=1$. At $x=1$, we apply the boundary condition to find that $e^{2}+c_{2} e^{2}=0$ and thus $c_{2}=-1$. Therefore the solution to the boundary value problem is

$$
y(x)=e^{2 x}(1-x)
$$

3. A tank contains 1000 L of water. Suppose that a grape Kool-Aid solution at a concentration of 100 grams per L is being piped into the tank at a rate of 10 L per minute. Suppose you are draining the tank at a rate of 20 L per minute. Assume that the Cool-Aid stays very well mixed.
(a) (1 point) Let $y(t)$ be the amount of Kool-Aid (in grams) in the tank at time t. Write down a differential equation for how this amount changes as a function of time.

We write $\frac{d y}{d t}=R_{\text {in }}-R_{\text {out }}$. $R_{i} n$ is given by the volume of liquid entering the tank multiplied by the concentration of Cool-Aid in this liquid. Thus

$$
R_{\text {in }}=\left(10 \frac{\mathrm{~L}}{\min }\right)\left(100 \frac{\mathrm{~g}}{\mathrm{~L}}\right)
$$

(Notice thate $R_{\text {in }}$ has units of $\mathrm{g} / \mathrm{min}$, as we expect. $R_{\text {out }}$ is a little trickier. We are assuming that the tank is well mixed, so at any given point in time, the concentration of Cool-Aid in the liquid is given by the average; that is, the concentration is equal to $y(t) /($ Volume of tank). The volume of the tank is not a constant; it changes because the liquid leaves the tank more quickly than it enters. We can figure out an expression for $v(t)$, the volume of the tank at time t, by solving the simple differential equation $d v / d t=-10$, with initial condition $v(0)=1000$. So $v(t)=1000-10 t$, and the concentration in the tank at time t is given by $y /(1000-10 t)$. Hence we have

$$
R_{\text {out }}=\left(20 \frac{\mathrm{~L}}{\min }\right)\left(\frac{y}{1000-10 t} \frac{\mathrm{~g}}{L}\right)
$$

Thus the differential equation for y is

$$
\frac{d y}{d t}=1000-\frac{2 y}{100-t}
$$

(b) (1 point) Solve the differential equation.

Rewrite the equation as

$$
y^{\prime}+\frac{2}{100-t} y=1000
$$

The equation is not seperable, so we use an integrating factor

$$
I(t)=e^{\int \frac{2}{100-t} d t}=e^{-2 \log (100-t)}=(100-t)^{-2}
$$

Then we have

$$
\frac{d}{d t}\left((100-t)^{-2} y\right)=1000(100-t)^{-2}
$$

Integrating and solving for y, we find that

$$
y=1000(100-t)+C(100-t)^{2}
$$

With initial condition $y(0)=0$, the solution is

$$
y(t)=1000(100-t)+10(100-t)^{2}
$$

