MT-630, DIFFERENTIAL GEOMETRY.

Problem 0.1. We say that a subset $l \subset \mathbb{R}^{2}$ is a non-vertical affine line if there exists constants $a_{l}, b_{l} \in \mathbb{R}$ such that

$$
\begin{equation*}
l=\left\{(x, y) \in \mathbb{R}^{2} \mid y=a_{l} x+b_{l}\right\} \tag{0.1a}
\end{equation*}
$$

Similarly, we say that a subset $l \subset \mathbb{R}^{2}$ is a non-horizontal affine line if there exists constants $c_{l}, d_{l} \in \mathbb{R}$ such that

$$
\begin{equation*}
l=\left\{(x, y) \in \mathbb{R}^{2} \mid x=c_{l} y+d_{l}\right\} \tag{0.1b}
\end{equation*}
$$

A subset $l \subset \mathbb{R}^{2}$ is simply called an affine line if it is either of the form 0.1a) or 0.1b).
Suppose that $l \subset \mathbb{R}^{2}$ is an affine line, we say that a point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is on l if $\left(x_{0}, y_{0}\right) \in l$. For example, if $l=\left\{(x, y) \in \mathbb{R}^{2} \mid y=a_{l} x+b_{l}\right\}$ is non-vertical, $\left(x_{0}, y_{0}\right)$ is on l if and only if $y_{0}=a_{l} x_{0}+b_{l}$.

Let

$$
M=\left\{\left(l,\left(x_{l}, y_{l}\right)\right) \mid l \subset \mathbb{R}^{2} \text { is an affine line, and }\left(x_{l}, y_{l}\right) \in l \text { is a point on that line }\right\}
$$

Consider the charts $\{(U, \phi),(V, \psi)\}$ for M given by

$$
\begin{aligned}
U:= & \left\{\left(l,\left(x_{l}, y_{l}\right)\right) \in M \mid l \text { is a non-horizontal affine line }\right\} \\
\phi: U \rightarrow & \mathbb{R}^{3}, \quad \phi\left(l,\left(x_{l}, y_{l}\right)\right)=\left(c_{l}, d_{l}, y_{l}\right) \\
& \text { where } l=\left\{(x, y) \in \mathbb{R}^{2} \mid x=c_{l} y+d_{l}\right\} \\
V:= & \left\{\left(l,\left(x_{l}, y_{l}\right)\right) \in M \mid l \text { is a non-vertical affine line }\right\} \\
\psi: V \rightarrow & \mathbb{R}^{3}, \quad \psi\left(l,\left(x_{l}, y_{l}\right)\right)=\left(a_{l}, b_{l}, x_{l}\right) \\
& \text { where } l=\left\{(x, y) \in \mathbb{R}^{2} \mid y=a_{l} x+b_{l}\right\}
\end{aligned}
$$

(1) Give a formula for the transition map

$$
\phi \circ \psi^{-1}: \psi(V) \rightarrow \phi(U) .
$$

(2) Show that the transition map $\phi \circ \psi^{-1}$ is smooth.

Since $\phi: U \rightarrow \mathbb{R}^{3}$ and $\psi: V \rightarrow \mathbb{R}^{3}$ are bijective, this implies that M is a 3 -dimensional manifold.

Problem 0.2. As in the previous problem, let M be the set of pairs $\left(l,\left(x_{l}, y_{l}\right)\right)$ where $l \subset \mathbb{R}^{2}$ is an affine line and $\left(x_{l}, y_{l}\right) \in l$ is a point on the line l. Consider the map

$$
P: \mathbb{R}^{3} \rightarrow M
$$

which sends a triple $(x, y, \theta) \in \mathbb{R}^{3}$ to $\left(l_{\theta},(x, y)\right)$, where l_{θ} is the line through (x, y) which makes an angle of θ with the positive x-axis.
(1) Give a formula for P with respect to each of the charts $\{(U, \phi),(V, \psi)\}$ for M,
(2) Show that $P: \mathbb{R}^{3} \rightarrow M$ is smooth.
(3) Is P a bijection? If so, provide a proof; if not, provide a counter example.

