MT-630, DIFFERENTIAL GEOMETRY.

Problem 0.1. We say that a subset $l \subset \mathbb{R}^2$ is a non-vertical affine line if there exists constants $a_l, b_l \in \mathbb{R}$ such that

(0.1a)
$$l = \{(x, y) \in \mathbb{R}^2 \mid y = a_l x + b_l\}.$$

Similarly, we say that a subset $l \subset \mathbb{R}^2$ is a non-horizontal affine line if there exists constants $c_l, d_l \in \mathbb{R}$ such that

(0.1b)
$$l = \{(x, y) \in \mathbb{R}^2 \mid x = c_l y + d_l\}.$$

A subset $l \subset \mathbb{R}^2$ is simply called an *affine line* if it is either of the form (0.1a) or (0.1b). Suppose that $l \subset \mathbb{R}^2$ is an affine line, we say that a point $(x_0, y_0) \in \mathbb{R}^2$ is on l if $(x_0, y_0) \in l$. For example, if $l = \{(x, y) \in \mathbb{R}^2 \mid y = a_l x + b_l\}$ is non-vertical, (x_0, y_0) is on l if and only if $y_0 = a_l x_0 + b_l$.

Let

 $M = \{(l, (x_l, y_l)) \mid l \subset \mathbb{R}^2 \text{ is an affine line, and } (x_l, y_l) \in l \text{ is a point on that line}\}.$

Consider the charts $\{(U,\phi),(V,\psi)\}$ for M given by

$$U := \{ (l, (x_l, y_l)) \in M | l \text{ is a non-horizontal affine line} \}$$

$$\phi : U \to \mathbb{R}^3, \qquad \phi(l, (x_l, y_l)) = (c_l, d_l, y_l),$$
where $l = \{ (x, y) \in \mathbb{R}^2 \mid x = c_l y + d_l \}$

$$V := \{ (l, (x_l, y_l)) \in M | l \text{ is a non-vertical affine line} \}$$

$$\psi : V \to \mathbb{R}^3, \qquad \psi(l, (x_l, y_l)) = (a_l, b_l, x_l),$$
where $l = \{ (x, y) \in \mathbb{R}^2 \mid y = a_l x + b_l \}$

(1) Give a formula for the transition map

$$\phi \circ \psi^{-1} : \psi(V) \to \phi(U).$$

(2) Show that the transition map $\phi \circ \psi^{-1}$ is smooth.

Since $\phi: U \to \mathbb{R}^3$ and $\psi: V \to \mathbb{R}^3$ are bijective, this implies that M is a 3-dimensional manifold.

Problem 0.2. As in the previous problem, let M be the set of pairs $(l,(x_l,y_l))$ where $l \subset \mathbb{R}^2$ is an affine line and $(x_l, y_l) \in l$ is a point on the line l. Consider the map

$$P: \mathbb{R}^3 \to M$$

which sends a triple $(x, y, \theta) \in \mathbb{R}^3$ to $(l_{\theta}, (x, y))$, where l_{θ} is the line through (x, y) which makes an angle of θ with the positive x-axis.

- (1) Give a formula for P with respect to each of the charts $\{(U,\phi),(V,\psi)\}$ for M, (2) Show that $P:\mathbb{R}^3\to M$ is smooth.
- (3) Is P a bijection? If so, provide a proof; if not, provide a counter example.