Averaging of Dirac structures

J. A. Vallejo* and Yu. Vorobiev

Facultad de Ciencias (UASLP) and
Departamento de Matemáticas (Unison)
México

Gone Fishing, Berkeley, 2014
Preliminaries: singular foliated structures

\(\Pi \text{ Poisson induces a symplectic foliation: leafwise } w = \{w_S\}_{S \in S}. \)

\(\Pi \text{ Dirac induces a presymplectic foliation: leafwise } w = \{w_S\}_{S \in S}. \)

Smoothness: for each \(f \in C^\infty(M) \) and \(m \in M \),
\(i_X m w_S = -d_m f \) defines a smooth vector field.

For \(X = X_f, Y = Y_f \) such vector fields,
\(\Pi(d_f, d_g) = w(X_f, X_g) \) (on each \(S \subset M \), \(w = w_S \)).

Reciprocally, given \(\Pi \text{ Poisson we can define } w \) by this formula (\(X_f \) is constructed just in terms of \(\Pi \)).

\(\text{Dirac induces a presymplectic foliation: leafwise } w = \{w_S\}_{S \in S}. \)

Smoothness: Let \(m \mapsto D_w m \subset T_m M \) be given by
\(D_w m = \{(X, \alpha) \in T_m M: X \in T_m S, \alpha|_{T_m S} = -i_X w_m\} \)

Then \(w = \{w_S\}_{S \in F} \) is smooth iff \(D_w \) is a smooth (Dirac) subbundle.

Reciprocally, given \(D \), we have \(\text{pr}(D) \subset TM \) integrable, and the presymplectic leaves are its maximal integral submanifolds. On \(S \), a leafwise presymplectic structure is \(w_m(X, Y) = -\alpha(Y) \).
Preliminaries: singular foliated structures

Π Poisson induces a symplectic foliation: leafwise $\mathcal{w} = \{w_S\}_{S \in \mathcal{S}}$.

Smoothness: for each $f \in \mathcal{C}^\infty(M)$ and $m \in M$,

$$i_{X_m} w_{S_m} = -d_m f$$

defines a smooth vector field.
Preliminaries: singular foliated structures

\(\Pi \) Poisson induces a symplectic foliation: leafwise \(w = \{ w_S \}_{S \in \mathcal{S}} \).

Smoothness: for each \(f \in C^\infty(M) \) and \(m \in M \),

\[i_{X_m} w_{S_m} = -d_m f \]

defines a smooth vector field. For \(X = X_f, Y = Y_f \) such vector fields,

\[\Pi(\text{df}, \text{dg}) = w(X_f, X_g) \]

(on each \(S \subset M, w = w_S \)).

Reciprocally, given \(\Pi \) Poisson we can define \(w \) by this formula (\(X_f \) is constructed just in terms of \(\Pi \)).
Preliminaries: singular foliated structures

\(\Pi \) Poisson induces a symplectic foliation: leafwise \(w = \{w_S\}_{S \in S} \).

Smoothness: for each \(f \in \mathcal{C}^\infty(M) \) and \(m \in M \),

\[
i_{X_m} w_{S_m} = -d_m f
\]

defines a smooth vector field.

For \(X = X_f, Y = Y_f \) such vector fields,

\[
\Pi(df, dg) = w(X_f, X_g)
\]

(on each \(S \subset M, w = w_S \)).

Reciprocally, given \(\Pi \) Poisson we can define \(w \) by this formula (\(X_f \) is constructed just in terms of \(\Pi \)).
Preliminaries: singular foliated structures

\(\Pi \) Poisson induces a symplectic foliation: leafwise \(w = \{ w_S \}_{S \in \mathcal{S}} \).

Smoothness: for each \(f \in \mathcal{C}^\infty(M) \) and \(m \in M \),
\[
i_m X_m w_{S_m} = -d_m f
\]
defines a smooth vector field.

For \(X = X_f, Y = Y_f \) such vector fields,
\[
\Pi(df, dg) = w(X_f, X_g)
\]
(on each \(S \subset M, w = w_S \)).

Reciprocally, given \(\Pi \) Poisson we can define \(w \) by this formula (\(X_f \) is constructed just in terms of \(\Pi \)).

\(D \) Dirac induces a presymplectic foliation: leafwise \(w = \{ w_S \}_{S \in \mathcal{S}} \).

Smoothness: Let \(m \mapsto D^w_m \subset T_m M \)
\((T M = TM \oplus T^* M) \) be given by
\[
D^w_m = \{ (X, \alpha) \in T_m M : X \in T_m S, \alpha|_{T_m S} = -i_X w_m \}
\]

Then \(w = \{ w_S \}_{S \in \mathcal{F}} \) is smooth iff \(D^w \) is a smooth (Dirac) subbundle.
Preliminaries: singular foliated structures

\(\Pi \) Poisson induces a symplectic foliation: \(w = \{ w_S \}_{S \in \mathcal{S}} \).

Smoothness: for each \(f \in C^\infty(M) \) and \(m \in M \),

\[
i_X_m w_m = -d_m f
\]
defines a smooth vector field.

For \(X = X_f, Y = Y_f \) such vector fields,

\[
\Pi(df, dg) = w(X_f, X_g)
\]
(on each \(S \subset M, w = w_S \)).

Reciprocally, given \(\Pi \) Poisson we can define \(w \) by this formula (\(X_f \) is constructed just in terms of \(\Pi \)).

\(D \) Dirac induces a presymplectic foliation: \(w = \{ w_S \}_{S \in \mathcal{S}} \).

Smoothness: Let \(m \mapsto D^w_m \subset T_m M \) \((T M = TM \oplus T^* M)\) be given by

\[
D^w_m = \{ (X, \alpha) \in T_m M : X \in T_m S, \alpha|_{T_m S} = -i_X w_m \}
\]
Then \(w = \{ w_S \}_{S \in \mathcal{F}} \) is smooth iff \(D^w \) is a smooth (Dirac) subbundle.

Reciprocally, given \(D \), we have \(\text{pr}(D) \subset TM \) integrable, and the presymplectic leaves are its maximal integral submanifolds. On \(S \), a leafwise presymplectic structure is

\[
w_m(X, Y) = -\alpha(Y).
\]
Generating Dirac structures

Notice that, in the previous description, \(w_S \) can not be considered as the pullback of an \(w \in \Omega^2(M) \) to \(S \).
Generating Dirac structures

Notice that, in the previous description, \(w_S \) can not be considered as the pullback of an \(w \in \Omega^2(M) \) to \(S \).

Take \(\nu \in \Omega^2(M) \). It induces a distribution \(D^\nu \) on \(TM \):

\[
D^\nu = \text{Graph}(\nu) = \{(X, i_X \nu) : X \in \Gamma TM\} \subset TM.
\]

We have:

\(D^\nu \) is Dirac iff \(\nu \) is closed.

There is a contravariant version: any \(\Pi \in \Gamma \Lambda^2 TM \) induces

\[D^\Pi = \text{Graph}(\Pi) = \{(\iota_\alpha \Pi, \alpha) : \alpha \in \Gamma T^* M\} \subset TM. \]

Observe that \(\text{pr}(D^\Pi) = \Pi^\#(T^* M) \). The corresponding criterion is

\(D^\Pi \) is Dirac iff \(\Pi \) is Poisson.
Generating Dirac structures

Notice that, in the previous description, w_S can not be considered as the pullback of an $w \in \Omega^2(M)$ to S.

Take $\nu \in \Omega^2(M)$. It induces a distribution D^ν on TM:

$$D^\nu = \text{Graph}(\nu) = \{(X, i_X \nu) : X \in \Gamma TM\} \subset TM.$$

We have:

D^ν is Dirac iff ν is closed.

There is a contravariant version: any $\Pi \in \Gamma \Lambda^2 TM$ induces

$$D^\Pi = \text{Graph}(\Pi) = \{(i_\alpha \Pi, \alpha) : \alpha \in \Gamma T^* M\} \subset TM.$$

Observe that $\text{pr}(D^\Pi) = \Pi^\sharp(T^* M)$. The corresponding criterion is

D^Π is Dirac iff Π is Poisson.
Gauge transformations

Consider a Dirac manifold (M, D). Let $B \in \Omega^2(M)$. Then, to D and B we can associate a new distribution

$$\tau_B(D) = \{(X, \alpha - i_X B) : (X, \alpha) \in \Gamma(D)\}. $$

This new $\tau_B(D)$ is Dirac iff B is closed. In this case, B is called a gauge transformation (Bursztyn and Radko, ˇSevera and Weinstein). It is an exact gauge transformation if B is exact. One of the main purposes of our work is to study the role of these gauge transformations in the averaging theory of Poisson and Dirac structures under a certain class of actions of compact groups.
Gauge transformations

Consider a Dirac manifold \((M, D)\). Let \(B \in \Omega^2(M)\). Then, to \(D\) and \(B\) we can associate a new distribution

\[
\tau_B(D) = \{ (X, \alpha - i_X B) : (X, \alpha) \in \Gamma(D) \}.
\]

This new \(\tau_B(D)\) is Dirac iff \(B\) is closed. In this case, \(B\) is called a gauge transformation (Bursztyn and Radko, Ševera and Weinstein). It is an exact gauge transformation if \(B\) is exact.
Gauge transformations

Consider a Dirac manifold \((M, D)\). Let \(B \in \Omega^2(M)\). Then, to \(D\) and \(B\) we can associate a new distribution

\[
\tau_B(D) = \{ (X, \alpha - i_X B) : (X, \alpha) \in \Gamma(D) \}.
\]

This new \(\tau_B(D)\) is Dirac iff \(B\) is closed. In this case, \(B\) is called a gauge transformation (Bursztyn and Radko, Ševera and Weinstein). It is an exact gauge transformation if \(B\) is exact.

One of the main purposes of our work is to study the rôle of these gauge transformations in the averaging theory of Poisson and Dirac structures under a certain class of actions of compact groups.
Compatible actions

Let M be a manifold and G a connected compact Lie group. Denote by $a_M \in \Gamma TM$ the infinitesimal generator of the action $\Phi : G \times M \to M$, associated to an element $a \in \mathfrak{g}$,

$$a_M(m) = \left. \frac{d}{dt} \right|_{t=0} \Phi_{\exp(ta)}(m).$$

For any $F \in \mathcal{T}_s^r(M)$, its G–average is

$$\langle F \rangle^G = \int_G \Phi_{\gamma}^* F \, dg.$$

We also have another averaging $\delta^G : \text{Hom}_\mathbb{R}(\mathfrak{g}; \mathcal{T}_s^r(M)) \to \mathcal{T}_s^r(M)$,

$$\delta^G(\lambda) = \int_\mathcal{D} \left(\int_0^1 \Phi_{\exp(ta)}^* \lambda_a \, dt \right) \exp^* \, dg,$$

(where $\exp|_\mathcal{D} : \mathcal{D} \to G \setminus C(e)$ is a diffeomorphism).
Now let \((M, D)\) be a Dirac manifold, \((S, w)\) the associated presymplectic foliation. Suppose \(G\) acts on \(M\) preserving each leaf \(S\) of \(S = \text{pr}(D)\), but the action not necessarily canonical with respect to \(D\).
The action is \textit{compatible} if there exists a morphism \(\rho \in \text{Hom}_{\mathbb{R}}(g; \Omega^1(M))\) such that

\[i_{a_M} w_S = -i^*_S \rho_a , \]

for all \(a \in g\), where \(i_S : S \hookrightarrow M\) is the canonical injection.
Equivalently,

\[(a_M, \rho_a) \in \Gamma(D) , \]

for all \(a \in g\).
Main results
Regarding averaging of Dirac structures:

Theorem 1

If the G–action is compatible on (M, D), then the average $\langle \omega \rangle^G$ is smooth, and can be represented as

$$\langle \omega \rangle^G = \omega - i_s^\ast d\Theta,$$

where $\Theta \in \Omega^1(M)$ is the 1–form given by

$$\Theta := \delta^G(\rho).$$

The associated Dirac structure $\overline{D} := D\langle \omega \rangle^G$ is G–invariant and related to D by an exact gauge transformation, $B = d\Theta$

$$\overline{D} = \{(X, \alpha - i_X d\Theta) : (X, \alpha) \in D\}.$$
For Poisson structures around (singular) symplectic leaves:

Theorem 2

Let S be a symplectic leaf of the foliation induced by Π. Assume that the action of G on M is compatible with Π ($a_M = \Pi^\# \rho_a$ for all $a \in \mathfrak{g}$).

1. If G acts canonically on S (that is, $\iota^*_S \rho_a$ is closed on S), then, it determines a G—invariant Poisson bi-vector $\overline{\Pi}$, well-defined in a G—invariant neighborhood N of S in M. Both structures are related by an exact gauge transformation:

$$\overline{\Pi}^\# = \Pi^\# \circ (\text{Id} + (d\Theta)^\# \circ \Pi^\#)^{-1}.$$

2. Moreover, if $S \subset M^G$ (the set of fixed points), then, the germs at S of $\overline{\Pi}$ and Π are isomorphic by a local Poisson diffeomorphism $\phi : N \to M$,

$$\phi^* \Pi = \overline{\Pi}, \quad \phi|_S = \text{id}$$
The proof of this results uses the exact gauge form from Theorem 1, Θ, and a version of Moser path method adapted to contravariant tensors.

If along the paths ϕ_t the structures are related by exact gauge transformations, one can check that the time-dependent vector field Z_t given by

$$Z_t = -\Pi^\#_t(\Theta) = -\Pi^\# \circ (\text{Id} + t(d\Theta)^\# \circ \Pi^\#)^{-1}(\Theta),$$

satisfies the homotopy equation in terms of the Schouten-Nijenhuis bracket (Crainic, Frejlich, Mărcuț, Vorobiev)

$$[Z_t, \Pi_t] = -\frac{d\Pi_t}{dt}.$$

The sought-after Poisson diffeomorphism is then given by the flow at time 1, $\phi = \text{Fl}^{Z_t}_{Z_t}\big|_{t=1}$.
Next, we want to consider coupling Dirac structures. Recall that a set of geometric data on a foliated manifold consist of a normal bundle \mathbb{H} of \mathcal{F} (equivalently, a connection γ), a horizontal (coupling) 2–form $\sigma \in \Gamma \Lambda^2(\mathbb{V}^0)$ on M, and a leaf-tangent Poisson bivector $P \in \Gamma \Lambda^2(\mathbb{V})$. There is a one-to-one correspondence between integrable geometric data and coupling Dirac structures $D \subset \mathbb{T}M$, i.e., such that the tangent distribution

$$\mathbb{H}_m = \{ Z \in T_m M : \exists \alpha \in \mathbb{V}^0 \text{ such that } (Z, \alpha) \in D \},$$

is a normal bundle of \mathcal{F} (Dufour and Wade, Vaisman).
Let:

- \((M, \mathcal{F}, P)\) be a vertical Poisson structure (\(\mathcal{F}\) regular Poisson foliation).

- \(G\) be a connected compact Lie group with a locally Hamiltonian action \(a_M = P^\#(\mu_a)\) for all \(a \in \mathfrak{g}\), with \(\mu_a\) closed).

- \(D\) be a coupling Dirac structure with geometric data \((\gamma, \sigma, P)\).

Then, there exists a \(G\)–averaged \(\overline{D}\) which is a \(G\)–invariant coupling Dirac structure, that is, its geometric data are \((\overline{\gamma}, \overline{\sigma}, P)\), which can be explicitly computed from \(\gamma, \sigma\) and \(\mu\).
Obstructions to the existence of Hamiltonian actions

Instead of a foliation we now consider Poisson fibrations $(\pi : M \to B, P)$ (Brahic, Fernandes, Vaisman). We assume:

- A Hamiltonian action with momentum map $J \in \text{Hom}(g; \mathcal{C}^\infty(M))$, so $a_M = P^# dJ_a$ for each $a \in g$.
- A coupling Dirac structure D, with associated data (γ, σ, P).

In general, there are obstructions of cohomological type, which lead to the so-called adiabatic hypothesis in the context of geometric phases on Poisson fiber bundles (Marsden, Montgomery, Ratiu).
Obstructions to the existence of Hamiltonian actions

Instead of a foliation we now consider Poisson fibrations \((\pi : M \to B, P)\) (Brahic, Fernandes, Vaisman). We assume:

- A Hamiltonian action with momentum map \(J \in \text{Hom}(\mathfrak{g}; C^\infty(M))\), so \(a_M = P^\# dJ_a\) for each \(a \in \mathfrak{g}\).
- A coupling Dirac structure \(D\), with associated data \((\gamma, \sigma, P)\).

In general, the action is not Hamiltonian with respect to \(D\), but as there exists a \(G\)–invariant \(\overline{D}\), and the action is already assumed to be Hamiltonian with respect to \(P\), a natural question arises: when is the action Hamiltonian with respect to \(\overline{D}\)?
Obstructions to the existence of Hamiltonian actions

Instead of a foliation we now consider Poisson fibrations \((\pi : M \to B, P)\) (Brahic, Fernandes, Vaisman). We assume:

- A Hamiltonian action with momentum map \(J \in \text{Hom}(g; C^\infty(M))\), so \(a_M = P^\# dJ_a\) for each \(a \in g\).
- A coupling Dirac structure \(D\), with associated data \((\gamma, \sigma, P)\).

In general, the action is not Hamiltonian with respect to \(D\), but as there exists a \(G\)--invariant \(\overline{D}\), and the action is already assumed to be Hamiltonian with respect to \(P\), a natural question arises: when is the action Hamiltonian with respect to \(\overline{D}\)?

In general, there are obstructions of cohomological type, which lead to the so-called *adiabatic hypothesis* in the context of geometric phases on Poisson fiber bundles (Marsden, Montgomery, Ratiu).
The G—action is Hamiltonian on the Dirac manifold (M, \overline{D}) with momentum map J, that is,

$$(a_M, dJ_a) \in \Gamma(\overline{D}), \quad \forall a \in \mathfrak{g},$$

if and only if

$$\left\langle d_{1,0}^\gamma J \right\rangle^G = 0.$$
The G–action is Hamiltonian on the Dirac manifold (M, \overline{D}) with momentum map J, that is, $(a_M, dJ_a) \in \Gamma(\overline{D}), \quad \forall a \in \mathfrak{g},$

if and only if

$$\langle d_{1,0}^\gamma J \rangle^G = 0.$$

Notice that this condition is expressed in terms of the momentum map J (which reflects the action of G), and the connection γ (which comes from the geometric data).