Cluster Structures on Drinfeld Doubles

M. Gekhtman (joint with M. Shapiro and A. Vainshtein)

Gone Fishing 2014
Cluster Algebras

A seed (of geometric type) - a pair \(\Sigma = (\tilde{x}, \tilde{B}) \):

- extended cluster \(\tilde{x} = (x_1, \ldots, x_n, \ldots, x_{n+m}) \)
- stable extended exchange matrix \(\tilde{B} \) - an \(n \times (n+m) \) integer matrix whose \(n \times n \) principal part \(B \) is skew-symmetrizable.

(Skew-symmetric case: \(\tilde{B} \) is an adjacency matrix of a quiver \(Q \).)

The adjacent cluster in direction \(k \in [1, n] \):

\[x_k = (x_{\{x_k\}} \cup \{x'_k\}), \]

where the new cluster variable \(x'_k \) is given by the exchange relation

\[x_k x'_k = \prod_{1 \leq i \leq n+m, b_{ki} > 0} x_i^{b_{ki}} \prod_{1 \leq i \leq n+m, b_{ki} < 0} x_i^{-b_{ki}}; \]

\(\tilde{B}' \) is obtained from \(\tilde{B} \) by a matrix mutation in direction \(k \):

\[b'_{ij} = \begin{cases}
- b_{ij}, & \text{if } i = k \text{ or } j = k \\
& \text{otherwise.}
\end{cases} \]
A seed (of geometric type) - a pair $\Sigma = (\tilde{x}, \tilde{B})$:

- extended cluster $\tilde{x} = (x_1, \ldots, x_n, \ldots, x_{n+m})$.
- extended exchange matrix \tilde{B} - an $n \times (n+m)$ integer matrix whose $n \times n$ principal part B is skew-symmetrizable.

(Skew-symmetric case: \tilde{B} is an adjacency matrix of a quiver Q.

The adjacent cluster in direction $k \in [1, n]$:

$x_k = (x\{x_k\} \cup \{x'_k\})$,

where the new cluster variable x'_k is given by the exchange relation

$$x_k x'_k = \prod_{1 \leq i \leq n+m} b_{ki} > 0 x_{b_{ki}i} + \prod_{1 \leq i \leq n+m} b_{ki} < 0 x_{-b_{ki}i};$$

\tilde{B}' is obtained from \tilde{B} by a matrix mutation in direction k:

$$b'_{ij} = \begin{cases} -b_{ij}, & \text{if } i = k \text{ or } j = k; \\ b_{ij} + |b_{ik}| b_{kj} + |b_{ik}| b_{kj}^2, & \text{otherwise.} \end{cases}$$
A seed (of geometric type)
A seed (of geometric type) - a pair $\Sigma = (\tilde{x}, \tilde{B})$:
- extended cluster $\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$
 - cluster
 - stable

extended exchange matrix \tilde{B} - an $n \times (n+m)$ integer matrix whose $n \times n$ principal part B is skew-symmetrizable.

(Skew-symmetric case: \tilde{B} is an adjacency matrix of a quiver Q.)

The adjacent cluster in direction $k \in [1, n]$: $x_k = (x_\{x_k\} \cup \{x'_k\})$, where the new cluster variable x'_k is given by the exchange relation

$$x_k x'_k = \prod_{1 \leq i \leq n+m} b_{ki}^> x_{b_{ki}^i} \cdot \prod_{1 \leq i \leq n+m} b_{ki}^< x_{-b_{ki}^i}.$$
Cluster Algebras

- A **seed** (of *geometric type*) - a pair $\Sigma = (\tilde{x}, \tilde{B})$:
 - extended cluster $\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$
 - extended exchange matrix \tilde{B} - an $n \times (n + m)$ integer matrix whose $n \times n$ principal part B is skew-symmetrizable.
 (Skew-symmetric case: \tilde{B} is an adjacency matrix of a quiver Q.)
Cluster Algebras

- A seed (of geometric type) - a pair $\Sigma = (\tilde{x}, \tilde{B})$:
 - extended cluster $\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$
 - extended exchange matrix \tilde{B} - an $n \times (n + m)$ integer matrix whose $n \times n$ principal part B is skew-symmetrizable.
 (Skew-symmetric case: \tilde{B} is an adjacency matrix of a quiver Q.)
- The adjacent cluster in direction $k \in [1, n]$
A seed (of geometric type) - a pair \(\Sigma = (\tilde{x}, \tilde{B}) \):

- extended cluster \(\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}) \)
 - cluster \(x_1, \ldots, x_n \)
 - stable \(x_{n+1}, \ldots, x_{n+m} \)

- extended exchange matrix \(\tilde{B} \) - an \(n \times (n + m) \) integer matrix whose \(n \times n \) principal part \(B \) is skew-symmetrizable.
 (Skew-symmetric case: \(\tilde{B} \) is an adjacency matrix of a quiver \(Q \).)

The adjacent cluster in direction \(k \in [1, n] \):

\[
x_k = (x \setminus \{x_k\}) \cup \{x'_k\},
\]

where the new cluster variable \(x'_k \) is given by the exchange relation
A seed (of geometric type) - a pair \(\Sigma = (\tilde{x}, \tilde{B}) \):
- extended cluster \(\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}) \)
- extended exchange matrix \(\tilde{B} \) - an \(n \times (n + m) \) integer matrix whose \(n \times n \) principal part \(B \) is skew-symmetrizable.
 (Skew-symmetric case: \(\tilde{B} \) is an adjacency matrix of a quiver \(Q \).)

The adjacent cluster in direction \(k \in [1, n] \):

\[
x_k = (x \setminus \{x_k\}) \cup \{x'_k\},
\]

where the new cluster variable \(x'_k \) is given by the exchange relation

\[
x_k x'_k = \prod_{1 \leq i \leq n+m} x_i^{b_{ki}} + \prod_{1 \leq i \leq n+m} x_i^{-b_{ki}},
\]

\(b_{ki} > 0 \) \(b_{ki} < 0 \).
A seed (of geometric type) - a pair \(\Sigma = (\tilde{x}, \tilde{B}) \):
- extended cluster \(\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}) \)
- extended exchange matrix \(\tilde{B} \) - an \(n \times (n + m) \) integer matrix whose \(n \times n \) principal part \(B \) is skew-symmetrizable.
 (Skew-symmetric case: \(\tilde{B} \) is an adjacency matrix of a quiver \(Q \).)
- The adjacent cluster in direction \(k \in [1, n] \):
 \[x_k = (x \setminus \{x_k\}) \cup \{x'_k\}, \]
where the new cluster variable \(x'_k \) is given by the exchange relation
\[x_k x'_k = \prod_{1 \leq i \leq n+m} x_i^{b_{ki}} + \prod_{1 \leq i \leq n+m} x_i^{-b_{ki}}, \]
\(\tilde{B}' \) is obtained from \(\tilde{B} \) by a matrix mutation in direction \(k \)
Cluster Algebras

- A seed (of geometric type) - a pair $\Sigma = (\tilde{x}, \tilde{B})$:
 - extended cluster $\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$
 - extended exchange matrix \tilde{B} - an $n \times (n + m)$ integer matrix whose $n \times n$ principal part B is skew-symmetrizable.
 (Skew-symmetric case: \tilde{B} is an adjacency matrix of a quiver Q.)

- The adjacent cluster in direction $k \in [1, n]$:
 $$x_k = (x \setminus \{x_k\}) \cup \{x'_k\},$$
 where the new cluster variable x'_k is given by the exchange relation
 $$x_k x'_k = \prod_{1 \leq i \leq n+m} x_i^{b_{ki}} + \prod_{1 \leq i \leq n+m} x_i^{-b_{ki}},$$
 $$\text{if } b_{ki} > 0$$
 $$\text{if } b_{ki} < 0$$

- \tilde{B}' is obtained from \tilde{B} by a matrix mutation in direction k:
 $$b'_{ij} = \begin{cases}
 -b_{ij}, & \text{if } i = k \text{ or } j = k; \\
 b_{ij} + \frac{|b_{ik} b_{kj} + b_{ik} b_{kj}|}{2}, & \text{otherwise}.
 \end{cases}$$
\(\Sigma' = (x', \tilde{B}') \) is called \textit{adjacent} to \(\Sigma \) in direction \(k \). Two seeds are \textit{mutation equivalent} if they can be connected by a sequence of pairwise adjacent seeds.
\[\Sigma' = (x', \tilde{B}') \] is called adjacent to \(\Sigma \) in direction \(k \). Two seeds are mutation equivalent if they can be connected by a sequence of pairwise adjacent seeds.

Cluster structure \(\mathcal{C}(\tilde{B}) \): The set of all seeds mutation equivalent to \(\Sigma \).
• $\Sigma' = (x', \tilde{B}')$ is called \textit{adjacent} to Σ in direction k. Two seeds are \textit{mutation equivalent} if they can be connected by a sequence of pairwise adjacent seeds.

• \textbf{Cluster structure} $\mathcal{C}(\tilde{B})$: The set of all seeds mutation equivalent to Σ.

• \textbf{Cluster algebra} (of \textit{geometric type}) $\mathcal{A} = \mathcal{A}(\tilde{B})$ is generated by all cluster variables in all seeds mutation equivalent to Σ.
\(\Sigma' = (x', \tilde{B}') \) is called adjacent to \(\Sigma \) in direction \(k \). Two seeds are mutation equivalent if they can be connected by a sequence of pairwise adjacent seeds.

Cluster structure \(C(\tilde{B}) \): The set of all seeds mutation equivalent to \(\Sigma \).

Cluster algebra (of geometric type) \(\mathcal{A} = \mathcal{A}(\tilde{B}) \) is generated by all cluster variables in all seeds mutation equivalent to \(\Sigma \).

Upper cluster algebra \(\overline{\mathcal{A}} = \overline{\mathcal{A}(C)} = \overline{\mathcal{A}(\tilde{B})} \) is the intersection of the rings of Laurent polynomials in cluster variables taken over all seeds in \(C(\tilde{B}) \).
• $\Sigma' = (x', \tilde{B}')$ is called \textit{adjacent} to Σ in direction k. Two seeds are \textit{mutation equivalent} if they can be connected by a sequence of pairwise adjacent seeds.

• \textbf{Cluster structure} $\mathcal{C}(\tilde{B})$: The set of all seeds mutation equivalent to Σ.

• \textit{Cluster algebra} (of \textit{geometric type}) $\mathcal{A} = \mathcal{A}(\tilde{B})$ is generated by all cluster variables in all seeds mutation equivalent to Σ.

• \textbf{Upper cluster algebra} $\overline{\mathcal{A}} = \overline{\mathcal{A}(\tilde{B})}$ is the intersection of the rings of Laurent polynomials in cluster variables taken over all seeds in $\mathcal{C}(\tilde{B})$.

\[\mathcal{A}(\mathcal{C}) \subseteq \overline{\mathcal{A}(\mathcal{C})} \]
Compatible Poisson Brackets

A Poisson bracket \(\{ \cdot, \cdot \} \) on \(F = C(x_1, \ldots, x_n + m) \) is compatible with the cluster algebra \(A \) if, for any extended cluster \(\tilde{x} = (x_1, \ldots, x_n + m) \)

\[
\{ x_i, x_j \} = \omega_{ij} x_i x_j,
\]

where \(\omega_{ij} \in \mathbb{Z} \) are constants for all \(i, j \in [1, n + m] \).

Theorem (G.-S.-V.) Assume that \(\tilde{B} \) is of full rank. Then there is a Poisson bracket compatible with \(A(\tilde{B}) \).
A Poisson bracket \(\{ \cdot, \cdot \} \) on \(\mathcal{F}_\mathbb{C} = \mathbb{C}(x_1, \ldots, x_{n+m}) \) is \textit{compatible} with the cluster algebra \(\mathcal{A} \) if, for any extended cluster \(\tilde{x} = (x_1, \ldots, x_{n+m}) \)

\[
\{ x_i, x_j \} = \omega_{ij} x_i x_j ,
\]

where \(\omega_{ij} \in \mathbb{Z} \) are constants for all \(i, j \in [1, n + m] \).
A Poisson bracket $\{\cdot, \cdot\}$ on $\mathcal{F}_\mathbb{C} = \mathbb{C}(x_1, \ldots, x_{n+m})$ is compatible with the cluster algebra \mathcal{A} if, for any extended cluster $\tilde{x} = (x_1, \ldots, x_{n+m})$

$$\{x_i, x_j\} = \omega_{ij} x_i x_j,$$

where $\omega_{ij} \in \mathbb{Z}$ are constants for all $i, j \in [1, n + m]$.

Theorem (G.-S.-V.)

Assume that \tilde{B} is of full rank. Then there is a Poisson bracket compatible with $\mathcal{A}(\tilde{B})$.
Global Toric Action

Local toric action:

$$ T_d^W(x_i) = x_i \prod_{\alpha=1}^{r} d_\alpha^{w_i\alpha}, \quad i \in [n+m], \quad d = (d_1, \ldots, d_r) \in (\mathbb{C}^*)^r, $$

where $W = (w_{i\alpha})$ is an integer $(n + m) \times r$ weight matrix of full rank.
Global Toric Action

Local toric action:

\[\mathcal{T}_d^W(x_i) = x_i \prod_{\alpha=1}^{r} d_i^{w_{i\alpha}}, \quad i \in [n + m], \quad \mathbf{d} = (d_1, \ldots, d_r) \in (\mathbb{C}^*)^r, \]

where \(W = (w_{i\alpha}) \) is an integer \((n + m) \times r\) weight matrix of full rank.

Compatibility condition:

\[\begin{align*}
\mathcal{F}_C = \mathbb{C}(\tilde{x}) & \quad \longrightarrow \quad \mathcal{F}_C = \mathbb{C}(\tilde{x}') \\
\mathcal{T}_d^W & \quad \longrightarrow \quad \mathcal{T}_d^{W'}
\end{align*} \]
Global Toric Action

Local toric action:

$$\mathcal{T}_d^W(x_i) = x_i \prod_{\alpha=1}^{r} d_{\alpha}^{w_{i\alpha}}, \quad i \in [n + m], \quad d = (d_1, \ldots, d_r) \in (\mathbb{C}^*)^r,$$

where $W = (w_{i\alpha})$ is an integer $(n + m) \times r$ weight matrix of full rank.

Compatibility condition:

$$\mathcal{F}_C = \mathbb{C}(\tilde{x}) \xrightarrow{\mathcal{T}_d^W} \mathcal{F}_C = \mathbb{C}(\tilde{x}')$$

If local toric actions at all clusters are compatible, they define a global toric action \mathcal{T}_d on \mathcal{F}_C.
Key Observation

Let \((V, \{\cdot, \cdot\})\) be a Poisson variety that

- possesses a coordinate system \(\tilde{x} = (x_1, \ldots, x_{n+m})\) with Poisson relations as above (log-canonical) for some \(\omega_{ij} \in \mathbb{Z}\);
- admits an action of \((\mathbb{C}^*)^m\) that induces a local toric action of rank \(m\) on \(\tilde{x}\).

Then there exists a unique skew-symmetric cluster structure \(\mathcal{C}(\tilde{B})\) with the initial extended cluster \(\tilde{x}\) and stable variables \(x_{n+1}, \ldots, x_{n+m}\) that is compatible with \(\{\cdot, \cdot\}\) and such that the local toric action above extends to a global toric action.
\((G, \{\cdot, \cdot\})\) is called a **Poisson–Lie group** if the multiplication map

\[G \times G \ni (x, y) \mapsto xy \in G \]

is Poisson.
(G, {·, ·}) is called a Poisson–Lie group if the multiplication map

\[G \times G \ni (x, y) \mapsto xy \in G \]

is Poisson.

We are interested in the case

- G is a simple complex Lie group;
- \{·, ·\} = \{·, ·\}_r is associated with a classical R-matrix r - a solution of the CYBE:
A Poisson–Lie group $(\mathcal{G}, \{\cdot, \cdot\})$ is called a Poisson–Lie group if the multiplication map

$$\mathcal{G} \times \mathcal{G} \ni (x, y) \mapsto xy \in \mathcal{G}$$

is Poisson. We are interested in the case

- \mathcal{G} is a simple complex Lie group;
- $\{\cdot, \cdot\} = \{\cdot, \cdot\}_r$ is associated with a classical R-matrix r - a solution of the CYBE:

$$\{X \otimes X\}_r := [r, X \otimes X]$$
Belavin-Drinfeld Classification

Up to an automorphism, every classical R-matrix r belongs to one of disjoint classes \mathcal{R}_T specified by the Belavin-Drinfeld data

$$T = (\Gamma_1, \Gamma_2, \tau), \quad (\Gamma_{1,2} \subset \Delta, \ \tau: \Gamma_1 \to \Gamma_2),$$
Up to an automorphism, every classical R-matrix r belongs to one of disjoint classes \mathcal{R}_T specified by the Belavin-Drinfeld data

$$T = (\Gamma_1, \Gamma_2, \tau), \quad (\Gamma_1, \Gamma_2 \subset \Delta, \tau : \Gamma_1 \to \Gamma_2),$$

where Δ is the set of simple positive roots and τ is an isometry s.t.

$$\forall \alpha \in \Gamma_1 \exists m \in \mathbb{N} : \tau^j(\alpha) \in \Gamma_1 \ (j = 0, \ldots, m - 1), \ \tau^m(\alpha) \notin \Gamma_1.$$
Belavin-Drinfeld Classification

Up to an automorphism, every classical R-matrix r belongs to one of disjoint classes \mathcal{R}_T specified by the Belavin-Drinfeld data

$$T = (\Gamma_1, \Gamma_2, \tau), \quad (\Gamma_1, 2 \subset \Delta, \tau : \Gamma_1 \to \Gamma_2),$$

where Δ is the set of simple positive roots and τ is an isometry s.t.

$$\forall \alpha \in \Gamma_1 \ \exists m \in \mathbb{N} : \tau^j(\alpha) \in \Gamma_1 \ (j = 0, \ldots, m - 1), \ \tau^m(\alpha) \notin \Gamma_1.$$

\mathcal{R}_T is linear space of dimension $\frac{k_T(k_T - 1)}{2}$, where $k_T = \dim \mathfrak{h}_T$,

$$\mathfrak{h}_T = \{ h \in \mathfrak{h} : \alpha(h) = \beta(h) \text{ if } \beta = \tau^j(\alpha) \},$$
Let G be a simple complex Lie group. For any Belavin-Drinfeld triple $T = (\Gamma_1, \Gamma_2, \tau)$ there exists a cluster structure \mathcal{C}_T on G such that

- The number of stable variables is $2 \dim h_T$.
- The corresponding extended exchange matrix has a full rank.
- \mathcal{C}_T is regular, and the corresponding upper cluster algebra $A_{\mathcal{C}_T}(G)$ is naturally isomorphic to $O(G)$.
- The global toric action is generated by the action of $\exp(h_T) \times \exp(h_T)$ on G given by $(H_1, H_2)(X) = H_1 X H_2$.
- For any $r \in \mathbb{R} T$, $\{\cdot, \cdot\}_r$ is compatible with \mathcal{C}_T.
- A Poisson–Lie bracket on G is compatible with \mathcal{C}_T only if it is a scalar multiple $\{\cdot, \cdot\}_r$ for some $r \in \mathbb{R} T$.
Let \(G \) be a simple complex Lie group. For any Belavin-Drinfeld triple \(T = (\Gamma_1, \Gamma_2, \tau) \) there exists a cluster structure \(C_T \) on \(G \) such that

- the number of stable variables is \(2 \dim \mathfrak{h}_T \), and the corresponding extended exchange matrix has a full rank;
Let G be a simple complex Lie group. For any Belavin-Drinfeld triple $T = (\Gamma_1, \Gamma_2, \tau)$ there exists a cluster structure C_T on G such that

- the number of stable variables is $2 \dim \mathfrak{h}_T$, and the corresponding extended exchange matrix has a full rank;
- C_T is regular, and the corresponding upper cluster algebra $\mathcal{A}_C(C_T)$ is naturally isomorphic to $\mathcal{O}(G)$;
Let G be a simple complex Lie group. For any Belavin-Drinfeld triple $T = (\Gamma_1, \Gamma_2, \tau)$ there exists a cluster structure C_T on G such that

- the number of stable variables is $2\dim \mathfrak{h}_T$, and the corresponding extended exchange matrix has a full rank;
- C_T is regular, and the corresponding upper cluster algebra $\overline{A}_\mathbb{C}(C_T)$ is naturally isomorphic to $\mathcal{O}(G)$;
- the global toric action is generated by the action of $\exp(\mathfrak{h}_T) \times \exp(\mathfrak{h}_T)$ on G given by $(H_1, H_2)(X) = H_1XH_2$;
Main Conjecture

Let \(G \) be a simple complex Lie group. For any Belavin-Drinfeld triple \(T = (\Gamma_1, \Gamma_2, \tau) \) there exists a cluster structure \(C_T \) on \(G \) such that

- the number of stable variables is \(2 \dim \mathfrak{h}_T \), and the corresponding extended exchange matrix has a full rank;
- \(C_T \) is regular, and the corresponding upper cluster algebra \(\overline{A}_\mathbb{C}(C_T) \) is naturally isomorphic to \(O(G) \);
- the global toric action is generated by the action of \(\exp(\mathfrak{h}_T) \times \exp(\mathfrak{h}_T) \) on \(G \) given by \((H_1, H_2)(X) = H_1 X H_2 \);
- for any \(r \in R_T \), \(\{\cdot, \cdot\}_r \) is compatible with \(C_T \).
Main Conjecture

Let G be a simple complex Lie group. For any Belavin-Drinfeld triple $T = (\Gamma_1, \Gamma_2, \tau)$ there exists a cluster structure C_T on G such that

- the number of stable variables is $2 \dim \mathfrak{h}_T$, and the corresponding extended exchange matrix has a full rank;
- C_T is regular, and the corresponding upper cluster algebra $\mathcal{A}_\mathbb{C}(C_T)$ is naturally isomorphic to $\mathcal{O}(G)$;
- the global toric action is generated by the action of $\exp(\mathfrak{h}_T) \times \exp(\mathfrak{h}_T)$ on G given by $(H_1, H_2)(X) = H_1 X H_2$;
- for any $r \in \mathcal{R}_T$, $\{\cdot, \cdot\}_r$ is compatible with C_T;
- a Poisson–Lie bracket on G is compatible with C_T only if it is a scalar multiple $\{\cdot, \cdot\}_r$ for some $r \in \mathcal{R}_T$.

M. Gekhtman (joint with M. Shapiro and A. Vainshtein) (Notre Dame)
Example I: Standard Case

Trivial Belavin-Drinfeld data: $\Gamma_1 = \Gamma_2 = \emptyset$

\updownarrow

Standard Poisson-Lie Structure

\updownarrow

Berenstein-Fomin-Zelevinsky cluster structure on double Bruhat cells
Example I: Standard Case

Trivial Belavin-Drinfeld data: $\Gamma_1 = \Gamma_2 = \emptyset$

\[\uparrow\]

Standard Poisson-Lie Structure

\[\uparrow\]

Berenstein-Fomin-Zelevinsky cluster structure on double Bruhat cells

Initial cluster (GL_n case): collection of all trailing dense minors
Standard cluster structure in GL_5: initial quiver
Example II: ”Maximal” Belavin-Drinfeld Data

Cremmer-Gervais Poisson Structure

$G = SL_n$

$\Gamma_1 = \{ \alpha_2, ..., \alpha_{n-1} \}$

$\Gamma_2 = \{ \alpha_1, ..., \alpha_{n-2} \}$

$\gamma(\alpha_i) = \alpha_i - 1$ for $i = 2, ..., n-1$.

Theorem

There exists a cluster structure C_{CG} on $SL_n/\Gamma_1/\Gamma_2 = Mat_N$ compatible with the Cremmer–Gervais Poisson–Lie structure and satisfying all conditions of the Main Conjecture.

M. Gekhtman (joint with M. Shapiro and A. Vainshtein) (Notre Dame)

Cluster Structures on Drinfeld Doubles

Gone Fishing 2014 12 / 25
Example II: "Maximal" Belavin-Drinfeld Data

Cremmer-Gervais Poisson Structure

\[G = SL_n \]
\[\Gamma_1 = \{ \alpha_2, \ldots, \alpha_{n-1} \}, \quad \Gamma_2 = \{ \alpha_1, \ldots, \alpha_{n-2} \} \]
\[\gamma(\alpha_i) = \alpha_{i-1} \text{ for } i = 2, \ldots, n-1. \]
Example II: "Maximal" Belavin-Drinfeld Data

Cremmer-Gervais Poisson Structure

\[\mathcal{G} = SL_n \]
\[\Gamma_1 = \{\alpha_2, \ldots, \alpha_{n-1}\}, \quad \Gamma_2 = \{\alpha_1, \ldots, \alpha_{n-2}\} \]
\[\gamma(\alpha_i) = \alpha_{i-1} \text{ for } i = 2, \ldots, n - 1. \]

Theorem

There exists a cluster structure \(\mathcal{C}_{CG} \) on \(SL_n/GL_n/\text{Mat}_N \) compatible with the Cremmer–Gervais Poisson–Lie structure and satisfying all conditions of the Main Conjecture.
<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Cremmer-Gervais</th>
</tr>
</thead>
<tbody>
<tr>
<td>({x_{11}, x_{55}})</td>
<td>(2x_{15}x_{51})</td>
<td>(x_{15}x_{51} + x_{21}x_{45} + x_{25}x_{41} + x_{21}x_{45} + x_{31}x_{35})</td>
</tr>
<tr>
<td>({x_{12}, x_{52}})</td>
<td>(x_{12}x_{52})</td>
<td>(\frac{1}{5}x_{12}x_{52} + 2x_{22}x_{42} + x_{32}^2 - x_{11}x_{53} + x_{13}x_{51})</td>
</tr>
<tr>
<td>({x_{15}, x_{51}})</td>
<td>(x_{12}x_{52})</td>
<td>(-\frac{3}{5}x_{15}x_{51} + x_{21}x_{45} + x_{25}x_{41} + x_{31}x_{35})</td>
</tr>
</tbody>
</table>
For $X, Y \in \text{Mat}_n$, let $X = \begin{bmatrix} X & 0 \end{bmatrix}_0$, $Y = \begin{bmatrix} 0 & Y \end{bmatrix}_{1, n-1}$.

Put $k = \lfloor \frac{n+1}{2} \rfloor$, $N = k(n-1)$ and define a $k(n-1) \times (k+1)(n+1)$ matrix $U_{(X, Y)} = \begin{bmatrix} Y & X & 0 & \cdots & 0 \\ 0 & Y & X & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & Y & X \\ 0 & \cdots & 0 & 0 & Y \end{bmatrix}$.

Define $\theta_i(X) = \det X\begin{bmatrix} n-i+1 \\ n-i+1 \end{bmatrix}$, $i \in \begin{bmatrix} n-1 \end{bmatrix}$; $\phi_p(X, Y) = \det U_{(X, Y)}\begin{bmatrix} k(n+1)-p+1 \\ k(n+1) \end{bmatrix}$, $p \in \begin{bmatrix} N \end{bmatrix}$; $\psi_q(X, Y) = \det U_{(X, Y)}\begin{bmatrix} k(n+1)-q+2 \\ k(n+1)+1 \end{bmatrix}$, $q \in \begin{bmatrix} M \end{bmatrix}$. In the last family, $M = N/4$ if n is even/odd.
For $X, Y \in \text{Mat}_n$, let

$$
\mathcal{X} = [X_{[2,n]} \ 0], \quad \mathcal{Y} = [0 \ Y_{[1,n-1]}].
$$

In the last family, $M = \frac{N}{M} = N - n + 1$ if n is even/odd.
For $X, Y \in \text{Mat}_n$, let

$$X = [X_{2,n} \ 0], \quad Y = [0 \ Y_{1,n-1}] .$$

Put $k = \left\lfloor \frac{n+1}{2} \right\rfloor$, $N = k(n - 1)$ and define a $k(n-1) \times (k + 1)(n + 1)$ matrix

$$U(X, Y) = \begin{bmatrix}
Y & X & 0 & \cdots & 0 \\
0 & Y & X & 0 & \cdots \\
0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & 0 & Y & X
\end{bmatrix} .$$
For $X, Y \in Mat_n$, let

$$X = [X_{[2,n]} 0], \quad Y = [0 Y_{[1,n-1]}].$$

Put $k = \lfloor \frac{n+1}{2} \rfloor$, $N = k(n-1)$ and define a $k(n-1) \times (k+1)(n+1)$ matrix

$$U(X, Y) = \begin{bmatrix}
Y & X & 0 & \cdots & 0 \\
0 & Y & X & 0 & \cdots \\
0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & 0 & Y & X
\end{bmatrix}.$$

Define

$$\theta_i(X) = \det X_{[n-i+1,n]}^{[n-i+1,n]}, \quad i \in [n-1];$$

$$\varphi_p(X, Y) = \det U(X, Y)_{[N-p+1,N]}^{[k(n+1)-p+1,k(n+1)]}, \quad p \in [N];$$

$$\psi_q(X, Y) = \det U(X, Y)_{[N-q+1,N]}^{[k(n+1)-q+2,k(n+1)+1]}, \quad q \in [M].$$

In the last family, $M = N/N = N - n + 1$ if n is even/odd.
Figure: Translation invariance properties of $\bar{U}(X, X)$
The functions $\theta_i(X), \phi_p(X, X), \psi_q(X, X)$ form a log-canonical family with respect to the Cremmer–Gervais bracket.
Theorem

The functions $\theta_i(X), \phi_p(X, X), \psi_q(X, X)$ form a log-canonical family with respect to the Cremmer–Gervais bracket.

Intuition behind a construction of the initial cluster as well as the method of the proof come from considering the Poisson-Lie (Drinfeld) double of SL_N associated with the Cremmer-Gervais structure.
Figure: Quiver $Q_{CG}(5)$
Theorem

The cluster structure \mathcal{C}_{CG} is regular.
Theorem

The cluster structure \mathcal{C}_{CG} is regular.

The proof relies on Dodgson-type identities applied to submatrices of $U(X, Y)$ while taking into account its shift-invariance properties.
Theorem

\[O(\text{Mat}_n) \subset \tilde{\mathcal{A}}(C_{CG}) \]
Theorem

\[O(\text{Mat}_n) \subset \bar{A}(\mathcal{CG}) \]

The proof relies on induction on \(n \).
Theorem

\[O(\text{Mat}_n) \subset \tilde{\mathcal{A}}(\mathcal{C}_\text{CG}) \]

The proof relies on induction on \(n \).

Strategy

Two distinguished sequences of cluster transformations:

\[S \text{(number of mutations quadratic in } n) - \text{followed by freezing some of the cluster variables and localization at a single cluster variable} \]

\[\varphi_{n-1}(X) = \det [X] \]

realizes a map \(\zeta : \text{Mat}_n \{ X : \varphi_{n-1}(X) = 0 \} \rightarrow \text{Mat}_{n-1} \) that "respects" the Cremmer–Gervais cluster structure.

\[T \text{(number of mutations cubic in } n) - \text{realizes the anti-Poisson involution} \]

\[X \mapsto W_0 X W_0 \]

\(W_0 \) - the longest permutation.

M. Gekhtman (joint with M. Shapiro and A. Vainshtein) (Notre Dame)
Theorem

\[O(\text{Mat}_n) \subset \tilde{A}(\mathcal{CG}) \]

The proof relies on induction on \(n \).

Strategy

Two distinguished sequences of cluster transformations:

- \(S \) (\# of mutations quadratic in \(n \)) - followed by freezing some of the cluster variables and localization at a single cluster variable

\[\varphi_{n-1}(X) = \det X_{[2,n]}^{[1,n-1]} \] - realizes a map

\[\zeta : \text{Mat}_n \setminus \{X : \varphi_{n-1}(X) = 0\} \rightarrow \text{Mat}_{n-1} \]

that “respects” the Cremmer–Gervais cluster structure.
Theorem

\[O(\text{Mat}_n) \subset \tilde{A}(\mathcal{CG}) \]

The proof relies on induction on \(n \).

Strategy

Two distinguished sequences of cluster transformations:

- \(S \) (# of mutations quadratic in \(n \)) - followed by freezing some of the cluster variables and localization at a single cluster variable

\[\varphi_{n-1}(X) = \det X^{[2,n]}_{[1,n-1]} \] - realizes a map

\[\zeta: \text{Mat}_n \setminus \{ X: \varphi_{n-1}(X) = 0 \} \rightarrow \text{Mat}_{n-1} \]

that “respects” the Cremmer–Gervais cluster structure.

- \(T \) (# of mutations cubic in \(n \)) - realizes the anti-Poisson involution

\[X \mapsto W_0XW_0 \] (\(W_0 \) - the longest permutation)
Further Results and Work in Progress

Theorem

\[\text{TotPos}_{CG}(n) \subsetneq \text{TotPos}(n). \]
Further Results and Work in Progress

Theorem

\[\text{TotPos}_{CG}(n) \subsetneq \text{TotPos}(n) \, . \]

Theorem

The cluster algebra \(\mathcal{A}_{CG}(3) \) *is a proper subalgebra of the upper cluster algebra* \(\overline{\mathcal{A}}_{CG}(3) \).
Further Results and Work in Progress

Theorem

\[\text{TotPos}_{CG}(n) \subsetneq \text{TotPos}(n) . \]

Theorem

The cluster algebra \(\mathcal{A}_{CG}(3) \) is a proper subalgebra of the upper cluster algebra \(\overline{\mathcal{A}}_{CG}(3) \).

Idea of the proof: show that \(x_{12} \) can not belong to a log-canonical coordinate chart w.r.t. the Cremmer-Gervais Poisson structure.
Theorem

\[\text{TotPos}_{CG}(n) \subsetneq \text{TotPos}(n). \]

Theorem

The cluster algebra \(\mathcal{A}_{CG}(3) \) is a proper subalgebra of the upper cluster algebra \(\overline{\mathcal{A}}_{CG}(3) \).

Idea of the proof: show that \(x_{12} \) can not belong to a log-canonical coordinate chart w.r.t. the Cremmer-Gervais Poisson structure.

Conjecture

The cluster algebra \(\mathcal{A}_{CG}(n) \) is a proper subalgebra of the upper cluster algebra \(\overline{\mathcal{A}}_{CG}(n) \).
Conjecture

For any Belavin-Drinfeld data, there exists a compatible generalized cluster structure on the corresponding Drinfeld double and the dual Poisson-Lie group.
Conjecture

For any Belavin-Drinfeld data, there exists a compatible generalized cluster structure on the corresponding Drinfeld double and the dual Poisson-Lie group.

Proved for both the standard and Cremmer-Gervais cases in GL_n.

General GL_n case: proof in progress.
Example in GL_8:
Initial quiver for the standard double of GL_4:

Thank you!