
Private Learning of Linear Orders

L.C. Brown

April 2024

1 Introduction
A measure of privacy is necessary for individual liberty, and most members of industrial societies have noticed

that the increase in information storage capacity over the past twenty years has eliminated not only the urban
anonymity many were accustomed to but also the little privacy one may assume was enjoyed even in early agrarian
societies. Some learning theorists have addressed the problem of leveraging the enormous power of machine learning
without compromising human privacy; here, we examine in some detail a simple theoretical learning case which
illuminates techniques and subtle problems we hope future work will explore in more complex cases.

Our mathematical framework is based on the definitions of Dwork and her collaborators in [4], where the the-
ory of differential privacy is introduced as a useful mathematical model for the intuitive concept of privacy. Their
arguments for their philosophy, besides a wealth of mathematical analysis, can be found in [7]. A practical imple-
mentation of a differentially private learning algorithm can be found in [1]. Many organizations, including Google
and the United States Census Bureau, have used the theory of differential privacy or variants of it [8] [5].

Differential privacy is a desirable property of a learning algorithm for many reasons: the name promises pro-
tection from governments, companies, and other organizations with large information storage capacity, but the
mathematical definition also guarantees some degree of immunity to outlier data and resistance to measurement
error. Even an unscrupulous actor would prefer to use a differentially private algorithm if it were otherwise equiv-
alent to a less private algorithm.

We consider the problem of learning upwards-closed subsets of the real unit interval [0,1]. The non-existence
of a differentially private learner which learns this set probably approximately correctly for every measure on its
natural Borel σ−algebra was shown in [3], and the result was extended to impurely differentially private learners by
[2]. However, there are cases where the measure on the sample space is known, at least approximately, and there
the requirement that the learner be correct for every measure is unnecessary. When examining, say, the relationship
between human height and liver failure, one need not find a learner which would learn well even if every human in
the training data were exactly 175 cm or 195 cm tall. By demonstrating the significance of knowing the measure
in our case, which is the simplest case where the results of [2] imply there is no private learner which learns well
with respect to every measure, we hope to inspire a general examination of the amount of information one needs
about the measure when learning a given hypothesis class in order to maintain privacy without losing accuracy.1

We reproduce the definitions of differentially private learners and exponential mechanisms relevant to our pur-
pose here in the first section, as we require definitions more precise than those extant in the literature. In the
second section, we introduce our learner for the uniform measure by defining it on a certain subset of possible
training data and demonstrating it can be interpolated to all training data, regardless of whether those data are
realized by any member of our hypothesis class. The third section contains calculations which show our learners
are probably approximately correct with respect to the uniform measure. We draw attention to the use of logistic
functions as exponential mechanisms, as they are often overlooked in favor of Laplacians, which have a slightly
simpler form but, for a fixed accuracy requirement, sacrifice privacy in the most likely cases in favor of privacy in
unlikely cases. Our fourth section considers the case where the measure is non-uniform.

1Some accuracy must be lost, but one may hope that there is at least asymptotic agreement as the sample size increases.
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2 Learners
Fix a set M and X ⊂ P(M) a collection of subsets of M. We shall refer to X as our hypothesis class.

We also fix a σ-algebra M on M such that X ⊂ M. I will denote the unit interval [0,1] ⊂ R. We write 2 for
the set {0,1}; we shall not distinguish between subsets of a given set A and functions from A to 2, or between a
particular subset B ⊂ A and its characteristic function χB ∶ A → 2, where χB(a) = 1 precisely when a ∈ B. When
there is no danger of confusion, we write a for the one-element set {a}. The natural numbers are ω = {0,1,2, ...},
and A<ω = ∪∞n=0An.

Let N be a σ-algebra on X (that is, a collection of subsets of X) such that the evaluation map M × X → 2
which sends (m,x) to x(m) is measurable with respect to the product σ-algebra M×N . Let D be the set of
probability measures on N .

What we call learners are sometimes called random learners, or randomized learners. One may think of elements
of D as being instantiated in some way so that some element of X is ultimately “chosen” according to the measure;
the definition of differential privacy says changing one training datum cannot greatly change the likelihood of any
individual X ∈ X being chosen; to be more precise, the likelihood of choosing an X in some fixed A ⊂ X cannot
change greatly.

Definition 1. (i) A learner is a map Λ ∶ (M × 2)<ω → D. Let M denote the set of functions from M to I. The
composition of a learner with the map p ∶D→M which sends µ ∈D to the function which sends x to ∫X y(x)dµ(y)
is that learner’s prediction.

(ii) A learner Λ is (ℓ,α)-differentially private if ℓ is a positive integer, α,β ≥ 0 are real, and whenever A ∈ N
and ν = (ν′, ν′′), ρ = (ρ′, ρ′′) are elements of (M × 2)ℓ such that there is exactly one j < ℓ where ν(j) ≠ ρ(j) (that
is, ν′(j) ≠ ρ′(j) or ν′′(j) ≠ ρ′′(j), the ‘or’ here as elsewhere being inclusive), we must have Λ(ν)(A) ≤ eαΛ(ρ)(A).

(iii) A function Λ ∶ (M × 2)ℓ → D is said to be α-private if it satisfies the above definitions with the domain
restricted to (M × 2)ℓ.

Endless variations on the above definitions are possible; what we call differential privacy is sometimes called
pure differential privacy. The essential point in the definition of differential privacy is that no restriction is placed
on ν or ρ; neither X nor M enter into (ii). The ν and ρ could be unrealizable or unlikely training data. This
is a formalization of the definition in [7], and it is a natural definition from the conservative perspective of dif-
ferential privacy, which demands the protection of individual privacy even in cases where the data analyst makes
poor hypotheses or the collected data are inaccurate. In our setting, even one inaccurate datum may prevent our
hypothesis class X from realizing the training data, and dropping the privacy requirements in such cases amounts
to an admission of defeat in all scientific applications.

Combinatorial conditions on probably approximately correct (PAC) learnability date to [6]; the combinatorial
conditions necessary for PAC differentially private learning were established in [2].2 Of course, private learners
are easy to find, and the problem only becomes nontrivial when conjoined with the accuracy condition. Note that
the accuracy of a learner depends only on its prediction, whereas the definition of differential privacy makes direct
reference to the learner.

While we assume familarity with probably approximately correct learning, we reproduce a standard definition
here to fix notation.

Definition 2. A learner Λ is (ℓ, ϵ, δ)−probably approximately correct (PAC) for the measure µ, where ℓ is a natural
number, ϵ, δ > 0, if

µℓ({ξ ∈M ℓ ∶ Aµx
(Λ(ξ, x ○ ξ)) > 1 − ϵ}) > 1 − δ.

We say Λ is (ℓ, ϵ, δ)−PAC if it is (ℓ, ϵ, δ)−PAC for every measure µ on M.

The following definition is based on Chapter 3 of [7] and, in particular, Definition 3.3 of the same, where the
Laplace mechanism is considered.

2The reader unfamiliar with PAC learning may also refer to this paper for the definition of PAC learning we adopt.
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Definition 3. An exponential mechanism with rate at most C > 0 is a differentiable function f ∶ R → R with
f, f ′ ≥ 0 such that, for all a, x ∈ R, f ′(x + a) ≤ eC∣a∣f ′(x). If f is an exponential mechanism, the rate of f is the
least C such that f has rate at most C.

Lemma 1. All functions of the form eC(x−x0) or (1 + e−C(x−x0))−1, where x0 ∈ R and C ≥ 0, are exponential
mechanisms; so are all antiderivatives of functions of the form eC∣x−x0∣, with x0,C as above; in all cases, the rate
of the exponential mechanism is the respective C.

When we refer to logistic or Laplacian exponential mechanisms, we mean exponential mechanisms of the second
and third types, respectively, and we shall take x0 = 0 unless otherwise noted; further, we scale the Laplacian
exponential mechanisms by 2−1 so that their integrals over the real line equal 1.

The fundamental theorem of calculus yields

Lemma 2. If f is an exponential mechanism with rate C, then, for any real numbers a, b, and c, we have that
f(c + a) − f(c) ≤ eC∣b∣(f(c + a + b) − f(c + b)).

3 Privacy by Interpolation
We now describe how exponential mechanisms give private learners where X = {(a,1]∣a ∈ I}. To simplify

notation, we identify elements of X with their infima.3 Consider (I × 2)<ω = ∪i<ω(I × 2)n as a graph where there
is an edge between η and ν, written ηEν, if there is exactly one i < ∣η∣ = ∣ν∣ such that η(i) ≠ ν(i). Note that the
graph has infinitely many connected components, as each sequence is only connected to other sequences of the same
length.

Lemma 3. Let u ∶ (I × 2)<ω → I and d ∶ ω → R be functions such that, whenever ηEν in the aforementioned
graph structure, ∣u(η) − u(ν)∣ ≤ d(∣η∣), and, for each natural number i, let fi be a strictly increasing exponential
mechanism with rate k(i). Then the learner Λu,f which assigns to η ∈ (I × 2)i the measure on X with probability
density function Θ(t) = f ′i(t−u(η))

fi(1−u(η))−fi(−u(η))
is purely (i,2k(i)d(i))-differentially private for every i.

Proof. This follows from Definition 3 and Lemmas 1 and 2. †

Lemma 4. Let r ∶ ω →R+, and take Sr ⊂ (I×2)<ω to consist of those finite sequences (σ, τ) such that ∪i<∣σ∣B(r(∣σ∣), σ(i)) =
I, where B(s, x) ⊂ I denotes the ball of radius s centered at x, and σ(i) ≤ σ(j) Ô⇒ τ(i) ≤ τ(j). For (σ, τ) ∈ Sr,
put u(σ, τ) = 2−1(maxi∈τ−1(0) σ(i) +mini∈τ−1(1) σ(i)), where we consider max∅ = 0,min∅ = 1. If there is a path of
length m in (I × 2)<ω between ν, η ∈ Sr, ∣u(ν) − u(η)∣ ≤ 2mr(∣ν∣).

Proof. Let ℓ = ∣η∣ = ∣ν∣. Assume without loss of generality that ν is weakly increasing and u(ν) < u(η). Further
write ν = (σ, τ). We may assume τ−1(1) ≠ ∅. Pick i0 maximal so that τ(i0) = 0; if τ−1(0) = ∅, let i0 = −1. By
assumption, there is some j with i0 < j ≤ i0 +m + 1 such that ν(j) = η(j); take j0 to be the least such j. Because
ν ∈ Sr and is weakly increasing, the distance between σ(i) and σ(i + 1) is less than 2r(ℓ) for any i; consequently,
σ(j0) < σ(i0 + 1) + 2mr(ℓ), and with η = (σ′, τ ′),

min
i∈τ ′−1(1)

σ′(i) ≤ σ′(j0) = σ(j0).

Further, if j0 ≤ i0 +m, then σ(j0) < σ(i0) + 2mr(ℓ). Since τ ′(j0) = τ(j0) = 1 and σ′(i) ≤ σ′(j) Ô⇒ τ ′(i) ≤ τ ′(j),
we have maxi∈τ ′−1(0) σ

′(i) ≤mini∈τ−1(1) σ
′(i) ≤ σ(j0). In this case

max
i∈τ ′−1(0)

σ′(i) + min
i∈τ−1(1)

σ′(i) ≤ 2 min
i∈τ−1(1)

σ′(i)

≤ 2σ(j0)
< 2(σ(i0) + 2mr(ℓ))

≤ σ(i0) + σ(i0 + 1) + 4mr(ℓ),
whence the result follows immediately. If j0 = i0 + m + 1, the only paths from ν to η of length m pass only
through elements of Sr which agree with ν on i ≤ i0 and i ≥ j0. Consequently there are at most m i’s such that

3The choice between open and closed intervals is arbitrary and, from the perspective of accuracy for uniform Lebesgue measure, one
could even mix the two; the situation with non-uniform measures is more complicated.
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σ′(i0) < σ′(i) < σ′(j0), and we can conclude from the definition of Sr that, for any such i, σ′(i) ≤ σ(i0)+2mr. Thus
maxi∈τ ′−1(0) σ

′(i) ≤ σ(i0) + 2mr; combining this with the bound σ′(j0) < σ(i0 + 1) + 2mr(ℓ) yields the result.
†

Lemma 5. Let G be a graph and A ⊂ G, with f ∶ A → R such that, whenever a, b ∈ A and there is a path in G of
length at most m < ω between a and b, ∣f(a) − f(b)∣ ≤m. Then there is a map f ′ ∶ G →R extending f such that, for
all a′, b′ ∈ G such that there is a path of length at most m between a′ and b′, ∣f ′(a′) − f ′(b′)∣ ≤m.

Proof. This is a special case of the extension property of Lipschitz continuous functions: without loss of generality,
we may assume A and G are connected, which makes them metric spaces if we take the distance between two
vertices to be the length of the shortest path between them in G. †

Lemma 6. If r ∶ ω → R+ and u ∶ Sr → I is as above, and, for each i < ω, fi is a strictly increasing exponential
mechanism with rate k(i), there is ũ ∶ (I ×2)<ω → I extending u such that Λũ,f is purely (ℓ,4k(ℓ)r(ℓ))-differentially
private for every positive integer l.

Proof. Combine Lemmas 3, 4, and 5. †

4 Uniform Measure Accuracy
Having established that the learners arising from exponential mechanisms are private, we now show that the

logistic and Laplacian exponential mechanisms give accurate learners. All of our integrals, and therefore all of our
assertions realted to accuracy, are taken with respect to the uniform Lebesgue measure on the interval.

We first note that, if ℓ is large in comparison to r(ℓ)−1, then samples of length ℓ drawn according to the uni-
form measure lie in Sr with high probability. As this probability depends only on r(ℓ) rather than on the sequence
r, we state the result for the constant sequence r(ℓ) = N−1, where N is assumed to be an integer.

Lemma 7. If ℓ,N > 0 are integers and µ the uniform measure on I, p0 ∶ (I×2)<ω → I<ω the (post-composition with)
projection map, µℓ(p0(SN−1)) ≥ 1−N(1−N−1)ℓ. In particular, if δ > 0 and ℓ > log δ−logN

log(1−N−1) , then µℓ(p0(SN−1)) ≥ 1−δ.

Proof. If the union does not equal I, there must be some k such that im σ ∩ (kN−1, (k + 1)N−1) = ∅. For any fixed
such k < N, µℓ{σ ∈ Iℓ ∶ im σ ∩ (kN−1, (k + 1)N−1) = ∅} = (1−N−1)ℓ. Consequently, the µℓ-measure of their union is
less than or equal to N(1 −N−1)ℓ. †

Note that, if σ ∈ p0Sr and A ⊂ I is upwards-closed, (σ,A ○ σ) ∈ Sr.

For x ∈ I, y ∈ R, k > 0 we write Ak(x, y) = ∫
x
0 1 − (1 + e−k(z−y))−1dz + ∫

1
x (1 + e−k(z−y))−1dz. This is a measure

of how close the logistic function with rate k centered at y is to the characteristic function of (x,1]; namely, it is
the accuracy of Λu,f when it tries to learn the set (x,1] from training data η, where f is a logistic function and
η ∈ (I ×2)<ω is such that u(η) = y. To complete our argument, we must show that Ak(x, y) is close to 1 when ∣x−y∣
is small, which must be the case when x, y, and η are as above if η ∈ Sr and r(∣η∣) is small, for ∣x − y∣ ≤ 2r(∣η∣).

An antiderivative of (1 + e−k(z−y))−1 with respect to z is k−1 log(1 + ek(z−y)). So

Ak(x, y) = x + k−1(log(1 + ek(1−y)) + log(1 + e−ky)

−2 log(1 + ek(x−y)))
If x ≤ y,

Ak(x, y) ≥ 1 − x + y − 2k−1 log(1 + ek(x−y))
≥ 1 − x + y − 2(log 2)k−1.

By the symmetry of the logistic function, we have Ak(x, y) = Ak(1 − x,1 − y), and therefore whenever x, y ∈ I,

Ak(x, y) ≥ 1 − ∣x − y∣ − 2(log 2)k−1.
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We calculate the the accuracy Bk(x, y) of Λu,g(η) where g is the antiderivative of the Laplacian distribution
and u(η) = y for the set (x,1] in a similar fashion, obtaining Bk(x, y) ≥ 1 − ∣x − y∣ − k−1.

Of course, 2 log 2 > 1; the advantage of the logistic function is that it is more private in likely output regions,
unlike the Laplacian, which is equally private everywhere.

Lemma 8. For any positive integers N, ℓ, and all δ > 0, if f = (fi)i<ω is a sequence of logistic or Laplacian
exponential mechanisms, the rate k of fℓ is greater than 2, and ℓ > log δ−logN

log(1−N−1) , then the restriction of ΛN−1,f (as
defined in 3) to (I ×2)ℓ is a (3(N−1 +2k−1), δ)-accurate, 4kN−1-private learner for the upwards-closed subsets of I.

Proof. We only need constrain the impact of the normalizing factor (f(1 − a) − f(−a))−1 on the accuracy. Write
fk,a(x) = (1+e−k(x−a))−1. For the accuracy claim, it suffices to show 3−1 ≤ fk,a(1)−fk,a(0) ≤ 1 whenever a ∈ I. Note
that the upper bound is obvious and, as a function of a ∈ I, fk,a(1) − fk,a(0) attains its global minima when a = 0
and a = 1, the only other local extremum being the global maximum at a = 2−1. So we must concern ourselves with
bounding (1 + e−k)−1 − 2−1 from below, which is easy to do as the reciprocal function is convex and hence

(1 + e−k)−1 − 2−1 ≥ 1 − e−k − 2−1 = 2−1 − e−k.

This exceeds 3−1 whenever k > 2, and a similar computation yields the same bound for each k in the case where fℓ
is Laplacian. †

Lemma 9. If ϵ, δ, α > 0 and N, ℓ > 2 are positive integers such that N > 3ϵ−1(1 + 8α−1) and ℓ > log δ−logN
log(1−N−1) , there

is an (ϵ, δ)-accurate, (ℓ,α,0)-private learner on (I × 2)ℓ for the upwards-closed subsets of I with respect to the
uniform measure on I. In particular, there is a real number C such that, for all α, ϵ, δ ∈ (0,2−2), there is an
(ℓ, ϵ, δ)-accurate,(ℓ,α)-private learner on (I × 2)ℓ for some ℓ with ℓ < Cα−1ϵ−1(log δ−1 + logα−1 + log ϵ−1).

Proof. Put k = 2(3−1ϵ −N−1)−1 in the preceding lemma. For the latter statement, put D = 25 > 3(8 + α) and take
N to be the least integer greater than Dα−1ϵ−1 > 3ϵ−1(1 + 8α−1). Then

log δ − logN
log(1 −N−1) < N(logN + log δ

−1)

< (Dα−1ϵ−1 + 1)(log(D + 1) + logα−1 + log ϵ−1 + log δ−1)
< 2Dα−1ϵ−1(logα−1 + log ϵ−1 + log δ−1)

Therefore, there is some ℓ < 2Dα−1ϵ−1(logα−1 + log ϵ−1 + log δ−1) such that ΛN−1,f with f logistic or Laplacian
is (α,0)-private and (ϵ, δ)-accurate on (I × 2)ℓ. †

We can combine these into a single learner for all finite sequences in a natural way.

Lemma 10. If C a constant as in Lemma 9 and, for each ℓ < ω, h(ℓ) is the largest integer such that l >
3Ch(ℓ)2 logh(ℓ), r(ℓ) = C−1h(ℓ)−2, k(ℓ) = 2(5−1h(ℓ)−1 − r(ℓ))−1, and f(ℓ) is either the logistic or Laplacian expo-
nential mechanism with rate k(ℓ), then Λũ,f constructed from r and f as in Lemma 6 is (h(ℓ)−1, h(ℓ)−1)-accurate
with respect to the uniform measure and (h(ℓ)−1,0)-private for all l.

5 Nonuniform Measures
We have demonstrated a learner which is private and accurate with respect to uniform Lebesgue measure on the

real unit interval I. The nonexistence of a private learner which is accurate with respect to every measure on I is
implied by [3]. More precisely, the proof of Theorem 3.6 given there yields, with slight modification, a logarithmic
dependency of the number of training data a learner requires to learn with a fixed accuracy and privacy on the
size of a finite linear order whose upwards-closed subsets it learns.4 We suggest that the substantive distinction
between the case we have considered and the cases treated in [3] is not that one measure is uniform and the other
is not, but rather that the learner is only required to be accurate with respect to one measure.

If a measure µ on the Borel subsets of I has a continuous distribution function F (x) = µ([0, x]), then F is a
weakly order-preserving isomorphism between the measure space I equipped with µ and the measure space arising

4We include the proof of our case in an appendix.
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when I is equipped with the uniform measure, and the two situations are equivalent from our perspective. Com-
posing our learners Λf,u above with F in the appropriate fashion yields learners which are accurate with respect
to µ ∶ if (σ, τ) ∈ (I × 2)ℓ, then (F ○σ, τ) ∈ I × 2ℓ, and if we consider the distribution function Θ arising from integra-
tion of the probability density function Θ given in Lemma 3, Θ ○ F is a continuous distribution function on I; if
(Θ○F )(x) is taken to be the likelihood of the learner selecting an infimum for the set its guesses which is less than or
equal to x, one obtains a learner with the same accuracy and privacy guarantees given in the preceding two sections.

However, if the distribution function F associated to µ is not continuous (though, by the elementary theory of
measures, it must be right-continuous), we have a fundamentally different learning problem. The point masses at
discontinuities of F complicate Lemma 7, and the integrals appearing in the accuracy calculation must be replaced
by rougher estimates. Furthermore, we must expand our hypothesis class to include all upwards-closed subsets of
I, not just those that were open: with respect to the uniform measure, there is no meaningful distinction between
(a,1] and [a,1], but, in the general case, there is.

We shall describe the outputs of our learners by specifying the likelihood H(x) they accord to each x ∈ I for
belonging to the set being learned; when µ(x) = 0, our learners will only output (x,1], never [x,1] (the choice
being arbitrary), and when µ(x) > 0, we accord (x,1] the probability limy→x+H(y)−H(x) and [x,1] the probability
H(x) − limy→x−H(y). The one-sided limits exist because H is weakly increasing. Note that F is not assumed to
be absolutely continuous.

Write F1(x) = 2−1(F (x) + limy→x− F (y)) and Y = {(x,1]∣x ∈ I} ∪ {[x,1]∣x ∈ I}. The inequalities F1 ≤ F and,
for x < y, F (x) ≤ F1(y) are critical to the following computations.

We begin our analysis by modifying Lemma 3; the statement expresses what was written in natural language
in the previous paragraph.

Lemma 11. Suppose µ is a Borel measure on I and F (x) = µ([0, x]) is its distribution function. Let u ∶ (I×2)<ω → I
and d ∶ ω → R be functions such that, whenever ηEν in the aforementioned graph structure, ∣u(η) − u(ν)∣ ≤ d(∣η∣),
and, for each natural number i, let fi be a strictly increasing exponential mechanism with rate k(i). Then the learner
Λu,f which assigns to η = (σ, τ) ∈ (I × 2)i the measure on Y corresponding to the membership likelihood function

Hη(x) =
fi(F1(x) − u(η))

fi(1 − u(η)) − fi(−u(η))

is purely (i,2k(i)d(i))-differentially private for every i.

Proof. We must examine the measure on the two components of Y. Let ρη be the measure on I corresponding
to the distribution function limy→x+Hη(x), let νη be the measure on I corresponding to the distribution function
∑x≤bH(x)−limy→x−H(y), and let ξη be the measure corresponding to the distribution function ∑x≤b limy→x+H(y)−
H(x).Then put λη = ρη − νη − ξη. It is easy to see that λη is a positive measure, and the measure κ on Y which
induces H is, for each Borel A ⊂ I,

κη{(x,1]∣x ∈ A} = λη(A) + ξη(A)
κη{[x,1]∣x ∈ A} = νη(A)

None of these are probability measures. If, for some α > 0, we show that λ, ξ, ν assignments are α−private, the
α−privacy of κ will follow. Suppose ηEθ, η = (σ, τ), θ = (β, γ). By Lemma 2, the denominator of Hη and the
denominator of Hθ cannot differ by a factor greater than d(i)k(i), so we need concern ourselves only with the
numerator in each case.

Both νη and ξη concentrate on countable sets, and therefore it suffices to control the behavior of ν and ξ on
single-element sets, namely those x ∈ I where µ(x) > 0. Further,

Hη(x) − lim
y→x−

Hη(y) =
fi(F1(x) − u(η)) − limy→x− fi(F1(y) − u(η))

fi(1 − u(η)) − fi(−u(η))

=
limy→x− ∫

F1(x)−u(η)

F1(y)−u(η)
f ′i

fi(1 − u(η)) − fi(−u(η))
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with the analogous equation for θ, so Definition 3 yields the result. The analogous computation holds for ξη.

Fix some enumeration (cj)∞j=0 of the points x with µ(x) > 0, and put µn(A) = µ(A) − ∑n<j µ(cj)A(cj) for each
Borel A. Of course, the µi converge uniformly to µ. Also, let Fn be the distribution function of µn and put
Fn
1 (x) = 2−1(Fn(x) + limy→x− F (y)). Then we may define

Hn
η (x) =

fi(Fn
1 (x) − u(η))

fi(1 − u(η)) − fi(−u(η))
,

and λn
η , ρ

n
η , ν

n
η , ξ

n
η are defined for µn as λη, ρη, νη, ξη were defined for µ; all of the sequences of measures converge

uniformly. Note that, for x ∈ I and n and integer, λn
η(x) = 0. Therefore, the result will follow if we show the

required inequality between λn
η and λn

θ for every i, and it suffices to check λn
θ (a, b] ≤ e2k(i)d(i)λn

θ (a, b] whenever
{cj}j≤n ∩ (a, b] = ∅. But, in such cases, λn

θ (a, b] = ρnθ (a, b], and the relevant inequality for ρnθ and ρnη is affirmed
using Definition 3 much as in the case for νη and νθ. We are done. †

Suppose fi is a logistic mechanism. Note that, if ϵ ∈ (0,1) and k(i) > ϵ−1 log(ϵ−1 − 1), x < −ϵ implies fi(x) < ϵ; if
fi is Laplacian, the implication holds whenever k(i) > ϵ−1(− log 2 + log ϵ−1).

We obtain u in a different fashion, for the Sr employed above will not quite suffice. To this end,

We apply Theorem 2 of [6] to obtain immediately

Lemma 12. If ℓ > 0 is an integer, ℓ > 2r(ℓ)−2, and µ a Borel measure on I, p0 ∶ (I × 2)<ω → I<ω the (post-
composition with) projection map, and (m

≤k
) denotes the number of subsets of a (finite) set with m elements which

contain at most k elements, then

µℓ(p0(Tµ
r )) ≥ 1 − 4(

ℓ

≤ 2)e
−2−3r(ℓ)2ℓ.

As in the uniform case, one has a great deal of latitude in determining how much accuracy should be sacrificed to
preserve privacy; the choices we make in the theorem are reasonable asymptotically, but they require the statement
be restricted to cases with at least 244 training data, a condition which is not forced by the fundamental structure
of our method.

Lemma 13. Write h(x) = 2−1(1 −
√
1 − 24x−1/4). For each Borel measure µ on I, there is a learner Λ which is

(ℓ,3(6ℓ−1/4 log(h(x)−1 − 1) + h(x) + ℓ−1/3),4( ℓ

≤ 2)e
−2−3ℓ1/3))

- accurate and (ℓ, ℓ−1/12)−private for all upwards-closed subsets of I with respect to µ whenever ℓ > 244.

Proof. Put r(ℓ) = ℓ−1/3 and k(ℓ) = ℓ1/4, and let f = (fi)i<ω be the sequence of logistic exponential mechanisms with
rate k(i). Let Tµ

r ⊂ (I × 2)<ω consist of (σ, τ) with the property that σ(i) ≤ σ(j) → τ(i) ≤ τ(j) and, for all intervals
A with µA > r(∣σ∣), there is some i such that σ(i) ∈ A. We define u ∶ Tµ

r → I by

u(σ, τ) = 2−1( max
i∈τ−1(0)

F1(σ(i)) + min
i∈τ−1(1)

F1(σ(i))),

and the proof of Lemma 4 yields the analogous result for this u, as F1(b) − F1(a) ≤ µ[a, b]; we abuse notation by
referring to a fixed extension of u to all of (I × 2)<ω which maintains the Lipschitz constant also as u.5

Take Λu,f as in the statement of Lemma 11; the privacy statement is the conclusion of the lemma. We must
now constrain the accuracy. First we consider the measure given by only the numerator of Hη, neglecting the
denominator in the statement of Lemma 11 which normalizes to a probability measure. By Lemma 12, we need
concern ourselves only with the restriction of Λu,f to Tµ

r . Suppose η = (σ, τ) ∈ Tµ
r and ∣η∣ = ℓ. Write ϵ = −f−1ℓ (h(ℓ)),

and let A ⊂ I be upwards-closed. Put a = inf A. Our restriction on ℓ implies fℓ(−2−1r(ℓ)) > h(ℓ) and, hence, r(ℓ) < 2ϵ.

Suppose without loss of generality that u(η) ≤ F1(a). Write B = F −11 (u(η) − ϵ, u(η) + ϵ). If B = (s, t), then
µB = limw→t− F1(w) − limp→s+ F1(p) < 2ϵ; if B = [s, t] with s < t, then µB = F (t) − limw→s− F (w), and since
limp→t− F (p) > u(η) − ϵ, using F1(t) < u(η) + ϵ, we obtain F (t) < u(η) + 3ϵ, and the same argument goes for

5We changed the notation slightly; what is now r is analogous to what was before 2r.
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limw→s− F (w), so µB < 6ϵ. Similar computations apply to the half-open case; what remains is the case where
B = {s}. Here, either µB < r(ℓ) or s is in the image of σ. In the latter case, ∣u(η)−F1(s)∣ ≥ 4−1µ(s), because for any
x ≠ s, we have ∣F1(x)−F1(s)∣ ≥ 2−1µ(s). (This is why we needed to use F1 instead of F to define Λu,f .) So µ(s) ≤ 4ϵ.

We have either that µB < 6ϵ or that B = {s} and µs < r(ℓ). In the latter case, we clearly have an accuracy at least
1 − r(ℓ) − h(ℓ), and, in the former, we note µ(Ac ∩ F −11 [u(η) + ϵ,1]) < r(ℓ) because σ−1(Ac ∩ F −11 [u(η) + ϵ,1]) = ∅,
so we obtain accuracy of at least 1−h(ℓ) − r(ℓ) − 6ϵ. The factor of 3 arising in the normalization (the denominator
of Hη) multiplies the loss by at most 3, and the result follows. †
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