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Abstract

In this paper, we offer a general Prime Ideal Principle for proving that certain ideals in a commutative
ring are prime. This leads to a direct and uniform treatment of a number of standard results on prime ideals
in commutative algebra, due to Krull, Cohen, Kaplansky, Herstein, Isaacs, McAdam, D.D. Anderson, and
others. More significantly, the simple nature of this Prime Ideal Principle enables us to generate a large
number of hitherto unknown results of the “maximal implies prime” variety. The key notions used in our
uniform approach to such prime ideal problems are those of Oka families and Ako families of ideals in a
commutative ring, defined in (2.1) and (2.2). Much of this work has also natural interpretations in terms of
categories of cyclic modules.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most basic results in commutative algebra, given as the first theorem in Kaplansky’s
book [Ka2], is (1.1) below, which guarantees that certain kinds of ideals in a commutative ring
are prime. (In the following, all rings are assumed to be commutative with unity, unless otherwise
specified.)
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Theorem 1.1. (See [Ka2, p. 1].) Let S be a multiplicative set in a ring R. An ideal I ⊆ R that is
maximal with respect to being disjoint from S is prime.

Kaplansky credited this result to W. Krull. (We thank the referee for pointing us to the ref-
erence [Kr, Lemma, p. 732].) Shortly after presenting this result, Kaplansky stated: “In the next
two theorems we exhibit two ways of constructing prime ideals without using a multiplicatively
closed set.” These theorems, due respectively to Cohen and Herstein, are as follows.

Theorem 1.2. (See [Co].) Let I be an ideal in a ring R that is maximal with respect to not being
finitely generated. Then I is prime.

Theorem 1.3. For an R-module M , let I be an ideal in R that is maximal among all annihilators
of nonzero elements of M . Then I is prime.

As an analogue to (1.2), Kaplansky also gave the following as Exercise 10 in [Ka2, p. 8],
which he attributed to I.M. Isaacs.

Theorem 1.4. Let I be an ideal in a ring R that is maximal with respect to being nonprincipal.
Then I is prime.

The proofs of (1.1)–(1.4) given in the standard texts in commutative algebra (e.g. [Ei,Ka2,Ma,
Na1]) were basically the same, but gave no indication as to whether (or better, how) these results
may be related to one another. There were various other results too, all of the “maximal implies
prime” variety, which are scattered in the literature (some of them having appeared, for instance,
as exercises in Kaplansky’s book [Ka2]). But again, each one of these results seemed to have
required a special twist for its proof; no clear unifying pattern inherent in this body of results has
been proffered or discerned.

In this paper, we introduce an elementary Prime Ideal Principle, which states that, for suitable
ideal families F in a (commutative) ring, every ideal maximal with respect to not being in F
is prime. This Principle not only subsumes and unifies the results (1.1)–(1.4), but also applies
readily to retrieve all other results of the same kind in the literature that the authors are aware
of. More significantly, the simple nature of this Prime Ideal Principle enables us to generate with
minimal effort a number of hitherto unknown results on the existence of prime (and maximal)
ideals, with applications.

The key notion making this work possible is that of an Oka family of ideals in a ring, defined
in (2.1) below. The idea of an Oka family can be traced back to a certain Corollaire in “Num-
ber VIII” in K. Oka’s long series of papers on Cartan’s theory of analytic functions in several
complex variables, ca. 1951. Oka’s Corollaire 2 [Ok, p. 209] was well hidden as a result on
f.g. (finitely generated) ideals stated only for rings of complex functions in the SCV context. A
clear statement of Oka’s result in the general setting of commutative rings apparently first ap-
peared in (3.3) of Nagata’s book “Local Rings” [Na1]. Using this result, Nagata gave a proof for
Cohen’s theorem [Co, Theorem 2] that a commutative ring is noetherian if its prime ideals are
all f.g. [Na1, (3.4)]. Our definition of an Oka family in (2.1) was directly inspired by Nagata’s
treatment. In (2.2), we also introduce the closely related notion of an Ako family of ideals—in a
light-hearted reference to an Oka family. For both kinds of ideal families, the Prime Ideal Prin-
ciple is stated and proved in (2.4), and a useful Supplement to this principle is given in (2.6).
These, together with the fundamental result (2.7) explicating the logical dependence between the
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Oka and Ako notions (and some of their stronger versions), constitute the theoretic backbone of
this paper.

In Section 3, we give applications of the Prime Ideal Principle by first deriving uniformly all
known cases of the “maximal implies prime” results that we are aware of. A rather pleasant fact
here is that even D.D. Anderson’s theorem on minimal primes in [An] turned out to be just a spe-
cial case of the Prime Ideal Principle. Various new cases of applications of this Principle are then
taken up in the second half of Section 3. For instance, by working with suitable new Oka fam-
ilies, we derive the following sufficient conditions for maximal ideals in a general commutative
ring (see, respectively, (3.25), (3.24), and (3.22)):

(1) an ideal maximal with respect to not being a direct summand is maximal;
(2) an ideal maximal with respect to not being idempotent is maximal; and
(3) an ideal M maximal with respect to the property M � M2 � · · · is maximal.

Let Mc(R) denote the category of cyclic modules over a ring R. In Sections 4, 5, after setting
up the correspondence between ideal families in R and subcategories of Mc(R), we revisit the
many types of ideal families introduced in Section 2, and give categorical interpretations for
the defining properties of some of these families. Most notably, an Oka family of ideals in R

is seen to correspond to a subcategory of Mc(R) that is “closed under extensions.” With this
categorical view of Oka families, many examples of such families studied in Section 3 turn out to
correspond to various familiar subcategories of Mc(R) that are “clearly” closed under extensions
from the module-theoretic viewpoint. For instance, the Oka family of f.g. ideals in R corresponds
to the category of finitely presented cyclic modules, and the Oka family of direct summands in R

corresponds to the category of projective cyclic modules, etc. On the other hand, other examples
of subcategories of Mc(R) that are already well known to be closed under extensions lead to
further interesting examples of Oka families in R!

Throughout this paper, we use the notation I � R to indicate the fact that I is an ideal of a
(commutative) ring R. For subsets I, J, . . . ⊆ R, the ideal generated by their union is denoted by
(I, J, . . .). For instance, if a ∈ R and I, J � R, we have (I, J ) = I + J and (I, a) = I + (a). For
I � R and A ⊆ R, we define (I : A) to be the ideal {r ∈ R: rA ⊆ I }. The symbols Spec(R) and
Max(R) shall denote, as usual, the prime ideal spectrum and the maximal ideal spectrum of the
ring R.

Let F be a family of ideals in R with R ∈F . We say

(1) F is a semifilter if, for all I, J � R, I ⊇ J ∈F ⇒ I ∈ F ;
(2) F is a filter if it is a semifilter and A,B ∈F ⇒ A ∩ B ∈F ; and
(3) F is monoidal if A,B ∈ F ⇒ AB ∈F ; that is, F is a submonoid of the monoid of all ideals

of R under multiplication.

We will write F ′ for the complement of F (consisting of all ideals of R not belonging to F ),
and Max(F ′) for the set of maximal elements of F ′ (with respect to the partial ordering given by
the inclusion of ideals). We will say F ′ is an MP-family (“maximal implies prime”) if Max(F ′) ⊆
Spec(R). In this terminology, the Prime Ideal Principle simply states that, for any Oka or Ako
family F (in any ring), F ′ is an MP-family.
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2. Ideal families and the Prime Ideal Principle

We start with the two crucial definitions needed for this paper.

Definition 2.1. An ideal family F in a ring R with R ∈ F is said to be an Oka family (respec-
tively strongly Oka family) if, for a ∈ R and I,A � R, (I, a), (I : a) ∈ F ⇒ I ∈ F (respec-
tively (I,A), (I : A) ∈ F ⇒ I ∈F ).

Definition 2.2. An ideal family F in a ring R with R ∈ F is said to be an Ako family (re-
spectively strongly Ako family) if, for a, b ∈ R and I,B � R, (I, a), (I, b) ∈ F ⇒ (I, ab) ∈ F
(respectively (I, a), (I,B) ∈ F ⇒ (I, aB) ∈F ).

The following connections between the definitions given in (2.1)–(2.2) are self-evident.

Proposition 2.3.

(1) A strongly Oka family is Oka, and conversely if R is a principal ideal ring.
(2) A strongly Ako family is Ako, and conversely if R is a principal ideal ring.

With the notions of Oka and Ako families in place, we can now formulate the following
general result.

Prime Ideal Principle 2.4. If F is an Oka family or an Ako family, then F ′ is an MP-family; that
is, Max(F ′) ⊆ Spec(R).

Proof. Suppose some I ∈ Max(F ′) is not prime. Since I 	= R, there exist a, b /∈ I such that
ab ∈ I . Then (I, b), (I : a) � I (since they contain b), and (I, a) � I (since it contains a).
Therefore, (I, a), (I, b) and (I : a) all belong to F . But I = (I, ab) /∈ F , so F is neither Oka nor
Ako. �
Remark 2.5. The converse of (2.4) does not hold in general. For instance, let (R, (π)) be a
discrete valuation ring, and let F = {(π)i : i 	= 1,4}. Then F ′ = {(0), (π), (π)4} is an MP-
family (since Max(F ′) = {m} ⊆ Spec(R)). But F is not Oka since I := (π)4 /∈F , but (I,π2) =
(I : π2) = (π)2 ∈ F . From (I,π4) = (π4) /∈F , we see that F is also not Ako.

Another general statement concerning Oka and Ako families F is (2.6) below; this should be
viewed as a supplement to (2.4). In a special case, it says that, under a suitable chain assumption
on F ′, if the prime ideals of a ring “behave in certain ways,” then all ideals “behave in the same
way.”

Prime Ideal Principle Supplement 2.6. Let F be an Oka family or an Ako family in R. Assume
that every nonempty chain of ideals in F ′ (with respect to inclusion) has an upper bound in F ′.
(This holds, for instance, if all ideals in F are f.g.)

(1) Let F0 be a semifilter of ideals in R. If every prime ideal in F0 belongs to F , then F0 ⊆ F .
(2) Let J � R. If all prime ideals containing J (respectively properly containing J ) are in F ,

then all ideals containing J (respectively properly containing J ) are in F .
(3) If all prime ideals belong to F , then all ideals belong to F .
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Proof. (1) Assume there exists I ∈ F0 \ F . By the hypothesis on F ′ (together with Zorn’s
Lemma), I is contained in some P ∈ Max(F ′). Since F0 is a semifilter, P ∈ F0. But by (2.4), P

is prime, and hence (by assumption) P ∈ F , a contradiction.
(2) follows from (1) by taking F0 to be the semifilter consisting of all ideals containing J

(respectively properly containing J ). Finally, (3) follows from (1) by taking F0 to be the family
of all ideals in R. �

Before we proceed further, we would like to point out that, in our present approach, the Oka
and Ako properties are being singled out as suitable “common denominators” for various other
properties that would lead to a Prime Ideal Principle. The following result gives a sampling of
some of these other stronger properties.

Logical Dependence Theorem 2.7. For an ideal family F in R with R ∈ F , consider the fol-
lowing properties, where A,B, I, J denote arbitrary ideals in R:

(P1) F is a monoidal filter.
(P2) F is monoidal, and J ∈F , I ⊇ J ⊇ I 2 ⇒ I ∈F .
(P3) (I,A), (I,B) ∈ F ⇒ (I,AB) ∈ F .
(Q1) F is a monoidal semifilter.
(Q2) F is monoidal, and J ∈F , I ⊇ J ⊇ In for some n > 1 ⇒ I ∈ F .
(Q3) A,B ∈F and AB ⊆ I ⊆ A ∩ B ⇒ I ∈ F .
(Q4) A,B ∈F and AB ⊆ I ⊆ A ∩ B ⇒ I ∈ F if A/I is cyclic.
(Q5) A,B ∈F and AB ⊆ I ⊆ A ∩ B ⇒ I ∈ F if A/I,B/I are both cyclic.
(O4) I ⊆ J and J, (I : J ) ∈F ⇒ I ∈ F .
(O5) I ⊆ J and J, (I : J ) ∈F ⇒ I ∈ F if J/I is cyclic.1

We have the following chart of implications:

(Q1) ⇒ (Q2) ⇒ (Q3) ⇒ (Q4) ⇒ (Q5)


 
 
 
 

(P1) ⇒ (P2) ⇒ (P3) ⇒ str. Ako ⇒ Ako

⇓ ⇓ ⇓
str. Oka ⇒ Oka ⇒ P.I.P.


 

(O4) ⇒ (O5)

(2.8)

where P.I.P. is short for “Prime Ideal Principle.” Moreover, a family F satisfying (P3) (with
R ∈F) is closed under finite products and intersections.

Proof. To begin with, it is easy to see that (P1) ⇔ (Q1) ⇒ (Q2) ⇒ (P2). Now assume (P2):
we must prove (Q2) and (P3). For (P3), let (I,A), (I,B) ∈ F . The monoidal property gives
(I,A)(I,B) ∈F , so

(I,AB) ⊇ (I,A)(I,B) ⊇ (I,AB)2 (2.9)

1 To forestall misunderstanding, we remind the reader that all conditions (Pi ) and (Qi ) are supposed to carry with them
the presupposition that R ∈ F .
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implies that (I,AB) ∈ F according to (P2). To prove (Q2), suppose I ⊇ J ⊇ In for some n > 1,
where J ∈ F but I /∈ F . Then there exists a largest integer k such that J + I k /∈ F (noting that
J + I = I /∈ F and J + In = J ∈ F ). By (P2), however,

J + I k ⊇ J + I k+1 ⊇ (
J + I k

)2
(2.9)′

together with J + I k+1 ∈F imply that J + I k ∈F , a contradiction.
Next, we prove (P3) ⇔ (Q3). Assume (P3), and let A,B, I be as in (Q3). Then (I,A) = A

and (I,B) = B are both in F . By (P3), we have (I,AB) ∈ F . Since AB ⊆ I , this gives I ∈ F .
Conversely, assume (Q3), and let I,A,B be as in (P3). Let A0 = (I,A) and B0 = (I,B), which
are both in F . Noting that

A0B0 = I 2 + AI + IB + AB ⊆ (I,AB) ⊆ A0 ∩ B0, (2.10)

we conclude from (Q3) that (I,AB) ∈F .
Our notation scheme suggests that “strongly Ako” may be labeled (P4), and “Ako” may be

labeled (P5), in which case we have trivially (P3) ⇒ (P4) ⇒ (P5). With such labellings, (P4) ⇔
(Q4) and (P5) ⇔ (Q5) may be proved in the same way as in the last paragraph.

The equivalence “strongly Oka ⇔ (O4)” is easily seen by writing J = (I,A) in Definition 2.1
and noting that, with this notation, (I : J ) = (I : A). Specializing this to the case where J/I is
cyclic, we get the equivalence “Oka ⇔ (O5).”

Finally, assume (P3). Then its equivalent form (Q3) implies that F is closed under finite
products and intersections. To show that F is strongly Oka, assume (I,A) and B = (I : A) both
belong to F . Since (I,B) = B ∈F , (P3) implies that (I,AB) ∈ F . But AB ⊆ I , so this amounts
to I ∈ F . Upon replacing A by a principal ideal (a), the same proof shows that a strongly Ako
family is Oka. This (together with (2.4)) verifies all implications asserted in the chart (2.8). �

The observation in the result below gives a nice framework (as well as plenty of “abstract
examples”) for ideal families in any ring satisfying one of the properties in Theorem 2.7.

Proposition 2.11. Let (P) be any of the properties (Pj ), (Qj ), or (Oj ). In any ring R, the class
of ideal families having the property (P) is closed with respect to the formation of arbitrary
intersections. In particular, any family of ideals in R “generates” a minimal ideal family that has
the property (P) in R.

Proof. The first conclusion is based on a routine check (for each of the properties), which we will
leave to the reader. The second conclusion follows by taking the intersection of all ideal families
containing the given ideals and satisfying the property (P). (Of course, it may well happen that
the given ideals “generate” the family of all ideals.) �

As applications of (2.7), we will give below three easy constructions of strongly Oka and
strongly Ako families in general rings—through the properties (P1) and (P3). Many more exam-
ples of Oka and Ako families will be given in the ensuing sections.

Proposition 2.12. Let {pi} be a fixed subset of Spec(R). Then the family F = {I � R: I � pi for
every i} has the property (P1). In particular, F is a strongly Oka and strongly Ako filter.
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Proof. F being clearly a semifilter, we need only check that F is monoidal. (Recall that
(Q1) ⇔ (P1).) Let A,B ∈ F . If AB /∈ F , we would have AB ⊆ pi for some i. But then one
of A,B is in pi , a contradiction. �

For the F above, Max(F ′) consists of the maximal members of the family {pi}.

Proposition 2.13. Let {mi} be a fixed subset of Max(R). Then the family F = {I � R: I /∈ {mi}}
has the property (P3). In particular, F is a strongly Oka and strongly Ako monoidal family.

Proof. Since R ∈ F , it suffices to check the property (Q3) in (2.7). Let I � R be such that AB ⊆
I ⊆ A ∩ B , where A,B ∈ F . If I = mi for some i, clearly A = B = R. But then I ⊇ AB = R,
a contradiction. �

For the family F in (2.13), of course F ′ = Max(F ′) = {mi}. We note however that, if R is
not a field, then (0) /∈ {mi}, and hence (0) ∈ F . Thus, F is not a semifilter (if the set {mi} is
nonempty).

Proposition 2.14. Let S , T be ideal families in R such that S is closed under multiplications
and T is closed under finite intersections. Let

F = {R} ∪ {J � R: S ⊆ J ⊆ T for some S ∈ S and T ∈ T }. (2.15)

Then F has the property (P3). In particular, F is a strongly Oka and strongly Ako monoidal
family.

Proof. Again, we will check the property (Q3). Let I � R be such that AB ⊆ I ⊆ A ∩ B ,
where A,B ∈ F . If A = R, we have I = B ∈ F . We may thus assume that A,B � R. Then
S ⊆ A ⊆ T and S′ ⊆ B ⊆ T ′ for suitable S, S′ ∈ S and T ,T ′ ∈ T . Now SS′ ∈ S and T ∩T ′ ∈ T ,
so SS′ ⊆ I ⊆ T ∩ T ′ ⇒ I ∈F . �
Example 2.16. If the family T happens to contain R, F in (2.15) is simply the (monoidal)
semifilter generated by S . For more concrete examples of (2.15), let T be a singleton family {T },
where T � R. With T fixed, we may take, for instance, S = {0}, or S = {T n: n � 1}. In this way,
we get two families F , consisting of R together with all subideals of T , or R together with all
subideals of T containing some power of T . Both of these families have the (P3) property. It is an
interesting exercise to confirm the Prime Ideal Principle by directly computing the set Max(F ′)
in each of these cases.

Given the chart of implications in (2.8), various questions concerning the further relationships
between the Oka and Ako families (and their strong analogues) naturally arise. For instance, are
“Oka” and “Ako” logically independent properties? Is “Oka” equivalent to “strongly Oka”, and
is “Ako” equivalent to “strongly Ako,” etc.? Since the main focus of this paper is the study of the
Prime Ideal Principle, to take up these questions here would take us too far afield. We will thus
postpone the investigation of such questions to [LR]. In this sequel to the present paper, we will
show (among other things) that the chart of implications (2.8) is complete, in the sense that no
new implication arrows can be added to the chart—other than those obtainable by compositions.
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3. Applications of the Prime Ideal Principle

We start this section with some preliminary applications of (2.4) and (2.6) to the case of ideal
families having the strongest property (P1) in (2.7). Several of the conclusions we draw here are
familiar facts in commutative algebra. However, even though some of these conclusions (e.g. a
subset of those in (3.1)–(3.5)) are already known, they have not been previously recognized as
results coming from a common source. Here, they are all derived simply and uniformly from
(2.4) and (2.6). This work is quite easy to follow since it boils down to just a routine matter
of checking the Oka property of a suitable ideal family (which usually satisfies even stronger
properties). For instance, the easy and natural derivation of (3.4) from (3.3) is a case in point.
The second half of this section offers more applications, via the construction of new Oka and
Ako families in commutative rings.

The very first case of the application of (2.4) is where F = {R}, which, of course, satis-
fies (P1). In this case, we get the standard conclusion that Max(R) ⊆ Spec(R). A bit more
generally, we can easily retrieve (1.1) as a special case of (2.4), as follows.

Proposition 3.1. Let S ⊆ R be a nonempty multiplicative set. The ideal family F = {I � R:
I ∩ S 	= ∅} has the (strongest) property (P1) in (2.7). In particular, F is strongly Oka and
strongly Ako, and Max(F ′) ⊆ Spec(R).

As a special case, we can take S to be the multiplicative set of all non 0-divisors in R. In this
case, F is the family of the (so-called) regular ideals [Hu, p. 1]. In this case, (3.1) and (2.6)(2)
(with J = 0) give the following familiar conclusions.

Corollary 3.2.

(1) An ideal maximal with respect to containing only 0-divisors is prime;
(2) if R 	= 0 and all nonzero prime ideals in R are regular, then R is an integral domain.

For a second application, we start with a fixed set of ideals {Ij } in R, and let F be the family
of ideals that contain a (finite) product of the Ij ’s; that is, F is the monoidal filter (family with
the property (P1)) generated by the Ij ’s. By (2.7), F is (strongly) Ako and Oka, so (2.4) and
(2.6)(3) immediately give the following.

Proposition 3.3. An ideal maximal with respect to not containing a product of the Ij ’s is prime.
If the Ij ’s are f.g., and every prime ideal of R contains some Ij , then some product of the Ij ’s is
the zero ideal.

Corollary 3.4. (See D.D. Anderson [An].) Let S = {Ij } be the set of minimal primes in R. If each
Ij is f.g., then |S| < ∞.

Proof. Since every prime contains a minimal prime, (3.3) gives an equation Ij1 · · · Ijn = 0.
Clearly, S ⊆ {Ij1, . . . , Ijn}. (This is, of course, essentially the proof in [An], adapted to the ax-
iomatic setting of this paper.) �

Professor L. Avramov has kindly informed us that Anderson’s result can also be deduced
directly from Cohen’s Theorem 1.2, by localizing R at the multiplicative set R\⋃

Ij . This proof
j
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and the one given above bear an interesting comparison. The reduction to Cohen’s theorem is
nice, but uses the Prime Ideal Principle in its strongest form (for Oka families, after localization).
The proof given above uses, however, only a weak form of the Prime Ideal Principle—for (P1)

families, and without localization.
We note in passing that, in the torsion theory of rings, a Gabriel topology on a (in our case

commutative) ring R is a filter of ideals F in R satisfying a certain axiom (T4); see [St, (VI.5)].
These conditions imply that F is monoidal [St, (VI.5.3)], so F is again a (P1) family. In par-
ticular, the Prime Ideal Principle (2.4) applies to any Gabriel topology F . Indeed, the fact that
Max(F ′) ⊆ Spec(R) in this particular case was explicitly stated in [St, (VI.6.14)(i)].

Next, we consider the point annihilators of an R-module M . By definition, a point annihilator
of M is an ideal of the form ann(m), where m ∈ M \ {0}.

Proposition 3.5. Let M be a fixed R-module, and let S ⊆ R be a multiplicative set containing 1
but not 0. Let F be the family of ideals I � R such that, for m ∈ M , I ·m = 0 ⇒ sm = 0 for some
s ∈ S. Then F is a strongly Ako semifilter; in particular, it is both Ako and Oka. If an ideal J � R

is maximal with respect to being a point annihilator of M disjoint from S, then J ∈ Spec(R). In
particular, taking S = {1}, maximal point annihilators of M are prime: this retrieves Herstein’s
result stated in (1.3).

Proof. F is clearly a semifilter. To check that it is strongly Ako, let a ∈ R and I,B � R be such
that both (I, a) and (I,B) belong to F . To show (I, aB) ∈ F , suppose (I, aB) · m = 0, where
m ∈ M . Then (I,B) · am = 0, so sam = 0 for some s ∈ S. From this, (I, a) · sm = 0, so we have
s′sm = 0 for some s′ ∈ S. Since s′s ∈ S, this shows that (I, aB) ∈ F . The rest follows from the
Prime Ideal Principle (2.4), and the (easy) fact that the ideals J in question are exactly those in
Max(F ′). �
Remarks 3.6. (1) The primality of J was first proved by McAdam [Mc], although he stated it
only in the case where S is the complement of a given prime ideal of R.

(2) As a supplement to (3.5), it is worth noting that, if either R is a noetherian ring or M

is a noetherian module, then as in the previous examples, the family F again has the property
(Q1) (and hence (P1)). First, F is clearly a semifilter. To show F is monoidal, let A,B ∈ F ,
and say BA · m = 0, where m ∈ M . If R is noetherian, A = (a1, . . . , an) for some ai ’s. Then
B · aim = 0 ⇒ siaim = 0 for suitable si ∈ S, and hence sA · m = 0 for s = s1 · · · sn ∈ S. This
implies s′sm = 0 for some s′ ∈ S, so we have checked that BA ∈ F . If M is noetherian instead,
a similar argument works. However, without assuming any finiteness conditions, one will have
to use Proposition 3.5.

In the setting of (3.5), with M and S given, we can define the S-torsion submodule of M to be

Mt := {m ∈ M: sm = 0 for some s ∈ S}. (3.7)

Note that this is exactly the kernel of the localization map M → S−1M . With the above notation,
the F in (3.5) is just the family of ideals I � R such that annM(I) ⊆ Mt . Let us see what happens
when we apply this setup to the R-module M = R. In this case, the ideals I ∈ F (characterized
by the property that ann(I ) ⊆ Rt ) are said to be the S-dense ideals. Proposition 3.5 then gives
the following.
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Corollary 3.8. The family of S-dense ideals in a ring R has the property (P1) in (2.7). In partic-
ular, an ideal in R maximal with respect to not being S-dense is prime.

In the case S = {1}, the S-dense ideals are just called dense; these are the I � R that are
faithful as R-modules. For instance, a regular ideal is always dense. The converse does not hold
in general, but does hold over a noetherian ring R; see, e.g. [Ka2, Theorem 82]. Thus, in case R

is noetherian and S = {1}, (3.8) merely recaptures (3.2).
We can also apply the Prime Ideal Principle to the family of essential ideals. To this end, we

need the following lemma.

Lemma 3.9. Let I1, I2 be essential ideals in a reduced ring R. Then I1I2 is also essential.

Proof. Let r 	= 0. Then rx ∈ I1 \ {0} for some x ∈ R, and therefore rxy ∈ I2 \ {0} for some
y ∈ R. Since R is reduced, we have 0 	= r(xrxy) = (rx)(rxy) ∈ I1I2. This shows that I1I2 is
essential. �
Remark 3.10. The proof above works already for essential right ideals I1, I2 in a possibly non-
commutative ring R (using, in addition, the results [La1,La3: Ex.’s 12.14, 12.17]). However, the
conclusion of the lemma is false in general if R is not assumed to be reduced. For instance, let
(R,m) be a (commutative) local ring with 0 = m2 � m. Then m is essential in R, but m2 = 0 is
not.

Proposition 3.11. Let R be a reduced ring. Then the family F of essential ideals in R has the
(strongest) property (P1) in (2.7). In particular, an ideal in R maximal with respect to being
inessential in R is prime. If R is, in addition, noetherian, nonzero, and every nonzero prime is
essential in R, then R is an integral domain.

Proof. The property (P1) follows easily from (3.9). To prove the last statement, note that the
assumptions there imply that all nonzero ideals in R are essential, by (2.6)(2) (with J = 0). So
all nonzero ideals lie in F , and thus (0) ∈ Max(F ′) ⊆ Spec(R) by (2.4). �

The family of invertible ideals in a ring R fits well into our general axiomatic scheme as
well, although it no longer has the full property (P1). To analyze this family, we first prove the
following Factorization Theorem, the case (2) of which is crucial for working with invertible
ideals. The cases (3) and (4) in the theorem will be important for the later applications of the
Prime Ideal Principle in this section, and are grouped together here with case (2) since these
results are of the same spirit.

Factorization Theorem 3.12. Let I ⊆ J be ideals of R. The factorization equation I = J ·(I : J )

holds under each of the following assumptions:

(1) J = R, or J = I , or I = 0;
(2) J is an invertible ideal;
(3) J is a principal ideal;
(4) J/I is cyclic, and the ideals J and J · (I : J ) are idempotent.
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Proof. (1) If J = R, (I : J ) = I . If J = I , (I : J ) = R. In either case, I = J · (I : J ) obviously
holds. The case I = 0 follows from J · (I : J ) ⊆ I .

(2) Since J−1I � R and J−1I · J ⊆ I , we have J−1I ⊆ (I : J ). Since J · J−1 = R, multiply-
ing this by J yields I ⊆ J · (I : J ) ⊆ I .

(3) Say J = (x), where x ∈ R. From I ⊆ J , it is easy to see that I = x · (I : x). Therefore,
I = J · (I : J ).

(4) Say J = (I, a), where a ∈ R. Let K := J · (I : J ) ⊆ I . By assumption, K = K2 ⊆ I 2 ⊆
J · (I : J ) = K . Thus, I 2 = K . Our goal is to show that I ⊆ K . Let i1 ∈ I . Since i1 ∈ J = J 2,
we can write i1 = i2 + ar where i2 ∈ I 2 and r ∈ R. We have then r ∈ (I : a) = (I : J ), and so
ar ∈ J · (I : J ) = K . Now i1 = i2 + ar ∈ I 2 + K = K , as desired. �
Remark 3.13. Needless to say, the factorization equation I = J · (I : J ) fails in general. For
instance, if I is a f.g. regular prime ideal and J is an ideal strictly between I and R, then
J · (I : J ) � I . (This is because (I : J ) = I . If I = J · (I : J ), then I = J · I , and the deter-
minant trick in commutative algebra would have given J = R.)

We can now state the result on invertible ideals. The conclusion Max(F ′) ⊆ Spec(R) below,
from [Ka2, Exercise 36, p. 44], is due to McAdam, in the special case of domains. Here, using
(3.12)(2), we work with arbitrary monoidal families of invertible ideals, and prove our conclu-
sions more generally for all commutative rings.

Proposition 3.14. Any monoidal family F of invertible ideals in a nonzero ring R is strongly
Oka. Therefore, F ′ is an MP-family. In general, however, such families F need not be Ako.

Proof. We check the property (O4) in (2.7). Let I ⊆ J be ideals such that J and (I : J ) both
belong to F . By (3.12)(2), I = J · (I : J ) ∈F .

To see that F need not be Ako in general, consider the integral domain R = Z[θ ], where
θ2 = 5, and let F be the monoidal family of all invertible ideals in R. Let a = 2 and I =
(2(1 + θ)) � R. Then (I, a) = 2R is invertible. However, (I, a2) is not, since

(
I, a2) = (

4,2(1 + θ)
) = 2 · (2,1 + θ),

and (2,1 + θ) is not an invertible ideal in R, according to [La2, (2.19C)]. This showed that F is
not Ako. Note that the ring R in this example is not a Dedekind domain, since (1 + θ)/2 /∈ R is
integral over R. (In a Dedekind domain R, F would have been the family of all nonzero ideals
in R, which, of course, would have satisfied (P1).) �
Corollary 3.15. If all nonzero primes in a nonzero ring R are invertible, then R is a Dedekind
domain.

Proof. Let F be the family of all invertible ideals in R. By (3.14), F is (strongly) Oka. Also, all
ideals in F are f.g. Thus, by (2.6)(2), the hypothesis implies that all nonzero ideals of R are in F .
Since invertible ideals are regular, this in turn implies that R is a domain, and hence a Dedekind
domain. �
Remark. In the special case of integral domains, the above result was first proved by I.S. Cohen:
see [Co, Theorem 7].
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We now turn our attention to families of ideals that are defined via the number of elements
needed to generate them. More generally, for any R-module M , let μ(M) denote the least cardi-
nal μ such that M can be generated by μ elements.

Proposition 3.16. For a fixed infinite cardinal α, let Fα (respectively F<α) be the family of ideals
I � R such that μ(I) � α (respectively μ(I) < α). Then Fα (respectively F<α) is a monoidal
Oka family, and we have Max(F ′

α) ⊆ Spec(R) (respectively Max(F ′
<α) ⊆ Spec(R)).

Proof. We first treat the case Fα , which is monoidal since α · α = α. Let I � R and a ∈ R be
such that μ((I, a)) � α and μ((I : a)) � α. Then (I, a) = (I0, a) for some ideal I0 ⊆ I with
μ(I0) � α. It is easy to check that I = I0 + a(I : a). Thus, μ(I) � α + α = α; that is, I ∈ Fα .
This shows that Fα is Oka, so (2.4) gives Max(F ′

α) ⊆ Spec(R). The case of F<α can be treated
similarly. �

In the case where α = ℵ0, F<ℵ0 is the family of f.g. (finitely generated) ideals in R. The
conclusion that this family is Oka was due to Oka [Ok, Corollary 2]. The proof given here is
a streamlined version of those given in [Na1, p. 8] and [Ka2, p. 5].2 In this case, (2.6) gives
Cohen’s famous theorem that R is noetherian iff all primes of R are f.g. [Co, Theorem 2]. On the
other hand, the conclusions in (3.16) for the family Fℵ0 were noted in Exercise 11 in [Ka2, p. 8].
Surprisingly, however, there seems to be no reference in the literature for the cases where α is a
general infinite cardinal.

One more case that can be treated by similar methods is where α = 1. Following (3.16), we
will write F1 for the family of principal ideals in a (given) ring R.

Proposition 3.17. Let S ⊆ R be a multiplicatively closed set containing 1 (and possibly also 0),
and let F be the family of principal ideals (s) where s ∈ S. Then F is a monoidal strongly Oka
family, so we have Max(F ′) ⊆ Spec(R). In particular, these conclusions apply to the family F1
of all principal ideals in R, and R is a principal ideal ring iff all prime ideals of R are principal.
The conclusions also apply to the family of principal ideals generated by non 0-divisors of R.

Proof. F is monoidal since (x)(y) = (xy), and x, y ∈ S ⇒ xy ∈ S. Let I ⊆ J be ideals such
that J and (I : J ) belong to F . Since J is principal, (3.12)(3) implies that I = J · (I : J ) ∈ F .
This checks the (O4) property in (2.7), so F is strongly Oka. The rest of (3.17) follows from
(2.4) and (2.6). �

Again, some historical notes on (3.17) are in order. The part of this proposition on princi-
pal ideal rings was an observation of Kaplansky; see [Ka1, Footnote 8]. The primality of an ideal
maximal with respect to not being principal was attributed by Kaplansky to I.M. Isaacs; see Exer-
cise 10 in [Ka2, p. 8]. The (strong) Oka property for F (proved above for any given multiplicative
set S) is a common source for all of the above.

Remark 3.18. The families studied in (3.16) and (3.17) are Oka families, but in general they are
not Ako families. We can see this as follows. Let R be a ring with two elements a, b such that

2 For another approach to this result from the viewpoint of module categories, see the proof of (5.4)(1) below.
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I = (a) ∩ (b) is not f.g. (A well known example is the subring

R = Z
[
2x,2x2,2x3, . . .

] ⊆ Z[x], (3.19)

with a = 2x and b = 2x2: see [BJ, p. 58] or [Gi, p. 47].) Let F be the family of principal
(respectively f.g.) ideals in R. By (3.17) (respectively (3.16)), F is Oka. Here, (I, a) = (a) and
(I, b) = (b) are both in F . However, (I, ab) = I /∈ F , so F is not Ako. In case F is the family
of all principal ideals, it is in fact a strongly Oka family by (3.17). Thus, we have here a second
example of a strongly Oka family that is not Ako (and therefore not having the property (P3)).

The example above definitely demonstrated the “superiority” of the Oka property over the
Ako property, as the latter property has been shown to be insufficient to handle the two families
F<ℵ0 and F1 considered in (3.16) and (3.17).

To complete this section, we will give some examples of Oka families arising from the con-
sideration of the descending chains of powers of ideals in a ring R. The following is a general
observation on the intersections of such ideal powers.

Proposition 3.20. Let F0 be a monoidal filter in R (that is, F0 is an ideal family with the prop-
erty (P1)). Then the family F := {C � R:

⋂
Cn ∈ F0} is also a monoidal filter. In particular,

any ideal J maximal with respect to the property
⋂

Jn /∈ F0 is prime.

Proof. F is clearly a semifilter containing R, so we need only check that B,C ∈ F ⇒ BC ∈F .
This follows from the observation that

⋂
(BC)m =

⋂(
BmCm

) ⊇
(⋂

Bm
)(⋂

Cm
)

∈F0. � (3.21)

For instance, if S is any multiplicative set in R, (3.20) is applicable to F0 = {I � R:
I ∩ S 	= ∅}. Thus, any ideal J maximal with respect to S ∩ (

⋂
Jn) = ∅ is prime. In particu-

lar, if R is an integral domain, we can take S to be R \ {0}. In this case, we see that any ideal J

maximal with respect to
⋂

Jn = 0 is prime.

Proposition 3.22. The family F of ideals C � R such that the chain C ⊇ C2 ⊇ · · · stabilizes has
the property (Q2) in (2.7). Any ideal M maximal with respect to the property M � M2 � · · · is a
maximal ideal. A noetherian ring R is artinian iff C ⊇ C2 ⊇ · · · stabilizes for every C ∈ Max(R).

Proof. Again, we have R ∈ F . To check the monoidal property, let B,C ∈ F . For some m � 1,
we have Bm = Bm+1 and Cm = Cm+1. Thus,

(BC)m = BmCm = Bm+1Cm+1 = (BC)m+1, (3.23)

so BC ∈ F . To check the second half of (Q2), let C ∈ F and I ⊇ C ⊇ In, where I � R and
n > 1. Again, say Cm = Cm+1. Then Cm ⊇ (In)m ⊇ Cnm = Cm gives Inm = Cm. It follows that
(Inm)2 = C2m = Cm = Inm, so I ∈ F . Thus, (2.4) applies, showing that the ideal M in (3.22) is
prime. But in the domain R = R/M , (a) ⊇ (a)2 ⊇ · · · stabilizes for every (a). This means that
R is a field, so M is maximal.

Finally, assume that R is noetherian with Max(R) ⊆ F . The last paragraph shows that F ′ = ∅,
so F is the family of all ideals. This readily implies that dim R = 0, and hence R is artinian. (In
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any case, dim R = 0 could have been easily checked via localizations and Krull’s Intersection
Theorem.) �

While we can think of the ideals C ∈F above as those having a suitable (positive) power that
is idempotent, we can equally well work with families of idempotent ideals themselves. In this
case, we get the following result.

Proposition 3.24. Let F be a monoidal family of idempotent ideals. Then F is an Oka family,
and so F ′ is an MP-family. If an ideal M � R is maximal with respect to the property M 	= M2,
then M ∈ Max(R).

Proof. It suffices to check that F has the property (O5) in (2.7). Let I ⊆ J be ideals such that
J/I is cyclic and J, (I : J ) ∈ F . Then J and J · (I : J ) are idempotent, so the Factorization
Theorem (3.12)(4) yields I = J · (I : J ) ∈F , as desired.

For the last statement in (3.24), we specialize to the case where F is the family of all idem-
potent ideals (which is certainly monoidal). Take any M ∈ Max(F ′). We know that M is prime
so R/M is an integral domain. But every ideal in R/M is idempotent, so R/M must be a field.
This means that M ∈ Max(R). �

By taking the intersection of the family of idempotent ideals with the family of f.g. ideals, we
get the family of ideals in R that are generated by single idempotents. These are, of course, just
the ideal direct summands of R. Thus, (3.17) (with S chosen to be the set of all idempotents)
would have implied that the family of such summands is strongly Oka. Independently of this, the
following direct analysis gives a still better conclusion.

Proposition 3.25. The family F of ideal direct summands of R has the property (P3). Any M � R

that is maximal with respect to not being a direct summand of R is a maximal ideal. A ring R is
semisimple iff all maximal ideals in R are direct summands of R.

Proof. Let A,B ∈ F ; say A = eR and B = f R, where e, f are idempotents. Then A ∩ B =
AB = ef R ∈ F . This clearly implies that F satisfies (Q3) and therefore (P3), according to (2.7).
Now let M ∈ Max(F ′). By (2.4), M is prime. In the meantime, every ideal in R/M is a direct
summand, so R/M is a semisimple ring. Since R/M is an integral domain, it must be a field,
and so M ∈ Max(R).

The last statement in the proposition now follows as in the proof of (3.22) (this time by
applying Zorn’s Lemma to F ′).3 �
Remark 3.26. In general, the family F above does not have the property (P2)! To see this, let
R = C × D, where C,D are two rings, and assume D has a nonzero ideal J with J 2 = 0. Then
C is a direct summand of R, and for I = C ⊕ J � R, we have I 2 = C2 ⊕ J 2 = C ⊆ I . However,
I is not a direct summand of R, for otherwise J would be a direct summand of D, which is not
the case as J 2 = 0 	= J .

3 The last statement in (3.25), with “maximal ideal” replaced by “maximal right ideal,” is a well-known characterization
of (possibly noncommutative) semisimple rings: it can be easily checked directly by an argument using the right socle of
the module RR .
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4. Categories of cyclic modules

For a commutative ring R, we will write M(R) for the category of (say left) R-modules, and
Mc(R) for the full subcategory of cyclic R-modules. There is a natural one-one correspondence
between the ideals of R and the isomorphism classes of the objects of Mc(R). To an ideal
I � R, we associate the isomorphism class of the cyclic R-module R/I . To a cyclic module
M in Mc(R), we associate the ideal ann(M) � R, which depends only on the isomorphism class
of M . Using this one-one correspondence, we can essentially identify the family of ideals of R

with the family of isomorphism classes of the objects of the category Mc(R).
In this section, we show that the viewpoint above leads to nice interpretations of Oka and Ako

ideal families in R (and their strong analogues) in terms of certain subcategories of Mc(R). To
handle first the Oka case, we will say that a subcategory4 C of Mc(R) is closed under extensions
if it contains the zero module and, for any exact sequence 0 → L → M → N → 0 in Mc(R),
L,N ∈ C implies M ∈ C. From this condition, it follows that, whenever L′ ∼= L, L ∈ C implies
L′ ∈ C (since there exists an exact sequence 0 → L → L′ → 0 → 0).

Theorem 4.1. Let C be a subcategory of Mc(R) that is closed under extensions. Then

FC := {I � R: R/I ∈ C} (4.2)

is an Oka family. Conversely, let F be an Oka family of ideals in R. Then

CF := {
M ∈ Mc(R): M ∼= R/I for some I ∈F

}
(4.3)

is a subcategory of Mc(R) that is closed under extensions.

Proof. To begin with, (0) ∈ C ⇒ R ∈ FC . To see that FC is Oka, we check that it has the property
(O5) in (2.7). Let I, J � R be such that J = (I, a) for some a ∈ R, with J , (I : J ) ∈FC ; that is,
R/J , R/(I : J ) ∈ C. Consider the exact sequence

0 → J/I → R/I → R/J → 0 (4.4)

in M . Since (I : J ) = (I : a), we have an R-isomorphism R/(I : J ) ∼= J/I defined by 1 �→ a.
Thus, J/I ∈ C, and so (4.4) implies that R/I ∈ C; that is, I ∈ FC , as desired.

Conversely, let F be an Oka family. The fact that R ∈ F gives (0) ∈ CF . Consider any short
exact sequence

0 → L → M → N → 0 in Mc(R), (4.5)

where L,N ∈ CF . We would like to show that M ∈ CF . To this end, represent M (up to
an isomorphism) in the form R/I , for some I � R. We may take L to be in the form J/I

where J = (I, a) for some a ∈ R. Then R/J ∼= N ∈ CF ⇒ J ∈ F . As before, we also have
R/(I : J ) ∼= J/I = L ∈ CF , so (I : J ) ∈ F . The fact that F is Oka now gives I ∈ F , and hence
M ∼= R/I ∈ CF , as desired. �

4 The word “subcategory” shall always mean “full subcategory” in the rest of this paper.
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As it turned out, it is also possible to give an interpretation of the Ako property of an ideal
family F by working with the subcategory CF associated with it. The result here is as follows.

Theorem 4.6. A subcategory C of Mc(R) containing the zero module is said to be Ako if, for any
two short exact sequences 0 → Li → M → Ni → 0 (i = 1,2) in Mc(R) such that there exist
surjections N2 � L1 and N1 � L2, we have N1,N2 ∈ C ⇒ M ∈ C. If C is Ako, then FC is an
Ako family. Conversely, if an ideal family F in R is Ako, then so is the associated subcategory
CF ⊆ Mc(R).

Proof. First assume C is Ako. To show that FC is Ako, we check the property (Q5) in (2.7).
For this, we start with AB ⊆ I ⊆ A ∩ B , where A,B ∈ FC , I � R, and A/I,B/I ∈ Mc(R).
Consider the two exact sequences

0 → A/I → R/I → R/A → 0 and 0 → B/I → R/I → R/B → 0. (4.7)

Since A/I is generated by some a, we have a surjection R/B � A/I defined by 1 �→ a (noting
that AB ⊆ I ). Similarly, we have a surjection R/A � B/I . As R/A,R/B ∈ C, the Ako property
on C implies that R/I ∈ C. This translates into I ∈ FC , which checks (Q5) for FC .

Conversely, let F be an Ako ideal family. To check that C := CF ⊆ Mc(R) has the Ako
property, consider the two exact sequences (in Mc(R)) in the statement of (4.6), with given
surjections N2 � L1 and N1 � L2, and with N1,N2 ∈ C. Since M ∈ Mc(R), M ∼= R/I for some
I � R. There exist ideals A,B ⊇ I such that we can “identify” the given sequences with those
in (4.7). Then, N1,N2 ∈ C amount to A,B ∈ F . A surjection N2 � L1 means now a surjection
R/B � A/I . This implies that A/I is cyclic and AB ⊆ I . Similarly, B/I is also cyclic. Then
(Q5) implies that I ∈ F , and thus M ∼= R/I ∈ CF = C. �

By slightly tweaking the hypotheses of (4.6) but using the same arguments, we can formulate
a similar categorical characterization for the strong Ako property for ideal families. However, this
time, we can no longer stay completely within the category Mc(R), and must work with the full
module category M(R). This is due to the fact that, in the condition (Q4) in (2.7) characterizing
the strong Ako property, the module B/I is not assumed to be cyclic. Nevertheless, we note
that, in the second part of the proof of (4.6), the existence of a single surjection R/B � A/I is
sufficient to imply that A/I is cyclic and AB ⊆ I . Thus, reworking the proof of (4.6) leads to
the following characterization of strongly Ako ideal families in R, in parallel to (4.6).

Theorem 4.8. The strong Ako property for an ideal family F corresponds to the following
“strong Ako property” on its associated category C ⊆ Mc(R): (0) ∈ C, and for any two exact
sequences in (4.6) where all modules except L2 are cyclic, if there exists a surjection N2 � L1,
then N1,N2 ∈ C ⇒ M ∈ C.

One interesting consequence of (4.8) is the following.

Corollary 4.9. Let F be a semifilter of ideals in R. Then F is Oka iff it is strongly Ako.

Proof. From (2.7), we know that the “if” part is true even without F being a semifilter. Now as-
sume F is an Oka semifilter. The semifilter property means that the associated category C := CF
is closed with respect to quotients. To check that C has the strong Ako property, consider two
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exact sequences as in the statement of (4.8), where all modules except L2 are cyclic, and there
exists a surjection N2 � L1. Assume that N1,N2 ∈ C; then L1 ∈ C too. From the first exact se-
quence, and the fact (from (4.1)) that C is closed under extensions in Mc(R), we see that M ∈ C,
as desired. �

Of course, it is also possible to prove (4.9) directly from the definitions (of “Oka” and
“strongly Ako”); see [LR]. However, the categorical characterizations of these properties made
(4.9) a very natural result. (A similar remark applies to Corollary 4.12 below.)

The case of ideal families with the property (Q3) (or equivalently, (P3)) can be given a cat-
egorical characterization as well. In this characterization, however, there will be no surjections
N2 � L1 or N1 � L2, so we have to treat the condition AB ⊆ I in (Q3) with a little more care.
Nevertheless, the same argument for proving (4.6) can be easily adapted to yield the following
characterization result, where ann(N) denotes the R-annihilator of an R-module N .

Theorem 4.10. The (Q3) property for an ideal family F corresponds to the following “(Q3)

property” on its associated category C ⊆ Mc(R): (0) ∈ C, and for any two surjections M � Ni

(i = 1,2) in Mc(R), if ann(N1) · ann(N2) ⊆ ann(M), then N1,N2 ∈ C ⇒ M ∈ C.

We now finish with a categorical characterization of strongly Oka ideal families.

Theorem 4.11. An ideal family F is strongly Oka iff its associated category C ⊆ Mc(R) has the
following “strongly Oka property”: (0) ∈ C, and, for any R-module exact sequence 0 → L →
M → N → 0 where M ∈ Mc(R), if N ∈ C and ann(L) ∈FC , then M ∈ C.

Proof. No new ideas are needed for this proof, if we just keep in mind that, for any two ideals
I ⊆ J in R, ann(J/I) = (I : J ). �
Corollary 4.12. Let F be a semifilter of ideals in R. Then F is strongly Oka iff it has the (Q3)

property.

Proof. Again by (2.7), the “if” part is true without F being a semifilter. Now assume F is a
strongly Oka semifilter. To check that C := CF has the (Q3) property in the sense of (4.10),
consider a cyclic module (say) M = R/I (I � R), and two epimorphic images, say R/A

and R/B , with A,B ⊇ I and AB ⊆ I . Assume that R/A,R/B ∈ C, so that A,B ∈ F . Then
L := ker(R/I � R/B) = B/I . Since ann(L) = ann(B/I) ⊇ A, we have ann(L) ∈ F , so (4.11)
implies that M ∈ C, as desired. �

After going through all the results in this section, we can see with hindsight why the Oka and
Ako properties are particularly nice to single out in the study of the Prime Ideal Principle: they
possess the simplest categorical characterizations purely within the category Mc(R) of cyclic R-
modules. As for the Oka and Ako properties themselves, a direct comparison of (4.1) and (4.6)
bears out once more our remark (made after (3.18)) that “Oka” is the superior one, since its cate-
gorical characterization in (4.1) is, in turn, simpler and nicer than that for “Ako” in (4.6). Indeed,
our work in the next section will make it quite clear that the easy categorical characterization of
“Oka” in (4.1) can be used very effectively to construct (by going over to the full module category
M(R)) a good number of interesting new examples of Oka families over arbitrary rings.
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5. Applications of the categorical viewpoint

According to Theorem 4.1, the choice of an Oka family in a ring R is equivalent to the choice
of a subcategory of C ⊆ Mc(R) that is closed under extensions in Mc(R). From a constructive
viewpoint, we can thus start with any such subcategory C, and use it to produce an Oka ideal
family in R. A natural way to find good candidates for C is the following. Let E be any subcat-
egory of M(R) that is closed under extensions (in M(R)). If we define C := E ∩ Mc(R), it is
easy to check that C is closed under extensions in Mc(R). In this way, any E above will produce
an Oka ideal family in R. In this section, we will record the many consequences of this general
construction.

To begin with, we will first “account for” some of the Oka families constructed in Section 3
from the categorical viewpoint. The first example is based on a given (nonempty) multiplicative
set S ⊆ R. For any R-module M , let Mt be the S-torsion submodule of M , as defined in (3.7). We
will say that M is S-torsion if Mt = M . A routine check shows that the subcategory E ⊆ M(R)

consisting of all S-torsion modules (and morphisms between them) is closed under extensions
(in M(R)). Specializing to cyclic modules, it is also easy to see that, for I � R, R/I ∈ E ⇔
I ∩ S 	= ∅. Therefore, in the language of (4.1), the category C := E ∩ Mc(R) corresponds to
the ideal family {I � R: I ∩ S 	= ∅}, which is exactly the (monoidal) Oka family constructed
in (3.1).

Somewhat surprisingly, in the context above, a second Oka family can be constructed, and
this will actually lead to some interesting new information. We define an R-module M to be
S-torsionfree if Mt = 0. Again, the category E0 of such modules is easily seen to be closed under
extensions in M(R). Therefore, C0 = E0 ∩ Mc(R) is closed under extensions in Mc(R). Now,
for I � R, it is routine to check that R/I ∈ E0 iff I is S-saturated in the sense that I = SatS(I ),
where

SatS(I ) = {r ∈ R: sr ∈ I for some s ∈ S}.5 (5.1)

Indeed, it is true in general that (R/I)t = SatS(I )/I . We can now deduce easily the following
result.

Proposition 5.2. The family F0 of S-saturated ideals in R is an Oka family that is closed with
respect to (arbitrary) intersections. The maximal members of F ′

0 are maximal ideals in R; in
fact,

Max
(
F ′

0

) = {
m ∈ Max(R): m ∩ S 	= ∅}

. (5.3)

This set is nonempty iff S contains a nonunit.

Proof. To begin with, it is clear that I, J ∈ F0 ⇒ I ∩ J ∈ F0. Since F0 corresponds to C0, the
fact that C0 is closed under extensions in Mc(R) guarantees that F0 is Oka. Let I ∈ Max(F ′

0 ).
The Prime Ideal Principle (2.4) guarantees that I is prime. But I 	= SatS(I ) ⇒ sr ∈ I for some
r /∈ I and s ∈ S. Since I is prime, we have s ∈ I ∩S. Now the only S-saturated ideal containing s

is the full ring R. Thus, the only ideal properly containing I is R, which shows that I ∈ Max(R).

5 Alternatively, SatS(I ) can be defined to be the contraction of the extension of I with respect to the localization map
R → S−1R.
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This proves the inclusion “⊆” in (5.3). Conversely, if m ∈ Max(R) contains an element of S,
obviously SatS(m) = R 	= m. Thus, m ∈ F ′

0 , which of course means that m ∈ Max(F ′
0 ). The last

conclusion is clear from Eq. (5.3). �
Next, let us quickly account for the Oka families of principal ideals, f.g. ideals, and essential

ideals in reduced rings from the categorical viewpoint. In the following, F shall refer to an Oka
family in R, and C shall refer to its corresponding subcategory in Mc(R).

Proposition 5.4.

(1) If F is the Oka family of all f.g. ideals in R, C is the category of all finitely presented cyclic
R-modules.

(2) If F is the Oka family of all principal ideals in R, C is the category of all 1-generator
1-relator R-modules.

(3) If F is the Oka family of all principal ideals generated by non 0-divisors in R, C is the
category of all nonfree cyclic R-modules with a free resolution6 of length 1.

(4) Let R be a reduced ring. If F is the Oka family of all essential ideals in R, C is the category
of all cyclic singular R-modules.7

Proof. (1) If I � R is f.g., 0 → I → R → R/I → 0 shows that R/I is finitely presented. Con-
versely, if R/I is finitely presented, [La2, (4.26)(b)] implies that I is f.g. (Recall that the category
E of all finitely presented R-modules is closed under extensions in M(R) [La4, Exercise 4.8(2)].
In view of (4.1), this gives a new categorical proof for Oka’s Corollaire 2 that F is an Oka
family.)

(2) is clear. For (3), if I = (a) where a is a non 0-divisor, R/I is nonfree and 0 → (a) → R →
R/I → 0 is a free resolution of length 1. Conversely, if R/I is nonfree and has a free resolution
0 → Rm → Rn → R/I → 0, Schanuel’s Lemma gives I ⊕Rn ∼= Rm ⊕R. Since I 	= 0, we must
have m = n and I ∼= R [La4, Exercise 5.16], so I = (a) for some non 0-divisor a ∈ R.

(4) This follows from the fact that I � R is essential iff R/I is a singular R-module. (This
fact holds over any ring R: see [La4, Exercise 7.2(b)]. However, we need an assumption such as
R is reduced to guarantee that the category E of singular R-modules is closed under extensions
in M(R); see [Go, (1.23)].) �

Another very effective way of constructing subcategories E ⊆ M(R) that are closed under
extensions is the following. Suppose R is a k-algebra, where k is a fixed commutative ring.
Let (E) be a k-module property that is satisfied by the zero module and preserved by k-module
extensions. Given (E), we can define E to be the category of R-modules that have the property (E)

when viewed as k-modules. Clearly, E is closed under extensions in M(R), since exact sequences
in M(R) remain exact in M(k). Thus, the general construction C = E ∩Mc(R) introduced at the
beginning of this section is applicable. Several immediate choices of the property (E) come to
mind:

(5.5) k-injectivity: the property of being injective as a k-module.
(5.6) k-projectivity: the property of being projective as a k-module.

6 All free resolutions are assumed to use only free modules of finite rank.
7 An R-module M is said to be singular if every m ∈ M has an essential annihilator in R.
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(5.7) k-flatness: the property of being flat as a k-module.
(5.8) the property of having a finite free resolution (FFR) in M(k).

Indeed, let 0 → L → M → N → 0 be exact in M(k). If L,N are k-injective (respectively k-
projective), then the sequence splits, so M ∼= L⊕N is also k-injective (respectively k-projective).
If L,N are k-flat instead, [La2, (4.13)] implies that M is k-flat. If L,N have FFRs, [La4,
(5.21)(C)] shows that M has FFR. Thus, the choices of (E) in (5.5)–(5.8) all lead to Oka families
F in R; in particular, the conclusions of (2.4) and (2.6) both apply to F . Note that, in the case
where k = R, the F arising from (5.6) is precisely the family of direct summands of R (dis-
cussed in (3.25)); on the other hand, the F arising from (5.7) is the family of all pure ideals in R,
according to [La2, (4.86)].8

For further generalization of (5.5)–(5.6), we can take (E) to be the property of having k-
projective (respectively k-injective) dimension < n, where n is a fixed positive integer, or the
symbol ∞.9 For n = 1, we get back (5.5)–(5.6), but for n = 2 and R a k-projective k-algebra,
we get the new Oka family of k-projective ideals in the ring R. In the latter case, we see, for
instance, that an ideal in R maximal with respect to not being k-projective is prime. And in the
case k = R, a direct application of (2.6)(3) yields the following characterization of noetherian
hereditary rings.

Corollary 5.9. A noetherian ring is hereditary iff its prime ideals are all projective.

This characterization can actually be further sharpened by replacing the word “prime” by
“maximal”. However, the proof of this would require more sophisticated tools from the homo-
logical dimension theory of noetherian rings, such as [La2, (5.92)].

Turning to finiteness conditions, we can also choose (E) to be any one of the following k-
module properties:

(5.10) the property of being a finitely cogenerated k-module;10

(5.11) the property of being a finite (respectively f.g.) k-module;
(5.12) the property of being a noetherian (respectively artinian) k-module;
(5.13) the property of being a k-module of finite length (or such a module whose composition

factors have certain prescribed isomorphism types, etc.).

Using these properties for (E), we get new examples of Oka families F in R. (The families F
resulting from (5.11)–(5.13) are clearly semifilters, so (4.9) implies that they are even strongly
Ako families!) Each of these families F leads to a new application of the Prime Ideal Principle
(2.4). For instance, from (5.11) and (5.12), we get the following results without any further proof:

(5.14) An ideal I � R maximal with respect to to having infinite index in R is prime.

8 An ideal I � R is said to be pure if I ↪→ R remains an inclusion upon tensoring with any R-module. It follows from
the analysis here that all pure ideals in R form an Oka family, and that an ideal maximal with respect to not being pure
is prime.

9 For the fact that the property (E) is preserved by k-module extensions, see, for instance, [La4, Exercise (5.0)(b)].
10 For the definition of finitely cogenerated k-modules, see [La2, (19.2)]. The fact that the category of such k-modules
is closed under extensions in M(k) is proved in [La4, Exercise (19.4)].
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(5.15) An ideal I � R maximal with respect to R/I not being an artinian k-module is maximal
(noting that an artinian domain is a field).

(5.16) An ideal I � R maximal with respect to R/I not being a noetherian k-module is prime.
This is Exercise 14 in [Ka2, p. 54], which required considerable work, but can be used
to prove the Eakin–Nagata Theorem (for the descent of the noetherian ring property) in
[Ea,Na2].

In the case k = R, if we choose (E) to be the property (5.10), the Prime Ideal Principle Sup-
plement (2.6)(3) can be used to deduce the following nice “artinian version” of I.S. Cohen’s
Theorem.

Corollary 5.17. A ring R is artinian iff, for every prime ideal P � R, P is finitely generated and
R/P is finitely cogenerated.

Proof. This follows from (2.6)(3), Cohen’s (noetherian) theorem, and the well-known fact that
a module M is artinian iff all factor modules of M are finitely cogenerated. (For a proof of the
latter, see [La2, Exercise (19.0)].) �

Note that, in this corollary, the condition “P is f.g.” cannot be removed (for the “if” part). For
instance, if (R,m) is a 0-dimensional local ring, then R/P is finitely cogenerated for all prime
ideals P , but R need not be artinian. (Of course, R is artinian iff m is f.g.)

In conclusion, let us mention one more class of examples. Suppose the k-module prop-
erty (E) studied in this section is preserved not only by extensions but also by quotients (e.g.
(5.11)–(5.13)). Then the following construction is possible. Fix any R-module M and define F
to be the family of ideals I � R such that, for every R-submodule L ⊆ M , L/IL has the prop-
erty (E) when viewed as a k-module. The two properties assumed on (E) easily imply that F is a
monoidal filter. Thus, (2.4) and (2.6) apply again to F . This example is inspired by a construction
of Isaacs in [Ka2, p. 74], where the property (E) is taken to be (5.12) (with k = R).
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