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Abstract

In this paper, we introduce a general theory of corner rings in noncommu-
tative rings that generalizes the classical notion of Peirce decompositions with
respect to idempotents. Two basic types of corners are the Peirce corners eRe
(e2 = e) and the unital corners (corners containing the identity of R). A gen-
eral corner is both a unital corner of a Peirce corner, and a Peirce corner of a
unital corner. The simple axioms for corners engender good functorial prop-
erties, and make possible a broader study of subrings with only some of the
features of Peirce corners. In this setting, useful notions such as rigid corners,
split corners, and semisplit corners also come to light. This paper develops the
foundations of such a corner ring theory, with a view toward a unified treatment
of various descent-type problems in ring theory in its sequel.

§1. Introduction

In the fourth volume of the American Journal of Mathematics, Benjamin Peirce
published a long article in 1881 with the title “Linear Associative Algebra” [Pe].
Much of Peirce’s detailed study of low dimensional associative algebras in this paper
is no longer read by current researchers. However, Peirce’s realization of the role of
nilpotent elements and idempotent elements in the study of an algebra had a lasting
impact on (what is later known as) ring theory. On p. 104 of [Pe], Peirce considered
an “expression” in an algebra such that, “when raised to a square or higher power, it
gives itself as the result”; such an expression, he wrote, “may be called idempotent.”

Peirce pointed out that a (nonzero) idempotent “can be assumed as one of the
independent units” (or basis elements) of the algebra. On p. 109 of [Pe], he wrote:

“The remaining units can be selected as to be separable into four distinct
groups. With reference to the basis, the units of the first group are idem-
factors; those of the second group are idemfaciend and nilfacient; those
of the third group are idemfacient and nilfaciend; and those of the fourth
group are nilfactors.”
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This quotation from [Pe] seems to be the origin of the Peirce decomposition of an
algebra R with respect to an idempotent element e ∈ R. Replacing the arcane
terminology with modern notations and proceeding in a basis-free manner, we may
identify Peirce’s four distinct groups as eRe, eRf, fRe, and fRf , where f denotes
the “complementary idempotent” 1 − e. The sum of these four additive groups is a
direct sum, equal to the whole ring (or algebra) R. The first group eRe is a ring in
its own right, with identity element e : this is the Peirce corner of R associated to
the idempotent e.

Through the last century, the study pf Peirce corners has played a major role
in noncommutative ring theory. The use of rings of the type eRe has proved to
be important in the consideration of many ring-theoretic issues, such as the decom-
positions and extensions of rings, continuous geometry, Boolean algebras, projective
modules, Morita equivalences and dualities, rings of operators, and path algebras of
quivers, etc. However, Peirce corners have a nontrivial presence only in rings with
idempotents, so for several important types of rings (e.g. domains or local rings), the
theory of Peirce corners cannot be expected to be of any direct impact.

In this paper, we use Peirce corner rings as a model for building a general theory
of corner rings in arbitrary rings. The notion of a Peirce corner is generalized as
follows. A subring S ⊆ R is called a (general) corner of R if R = S ⊕ C for a
subgroup C ⊆ R (called a complement of S) that is closed with respect to left and
right multiplications by elements of S. Peirce corners Re := eRe are a special case,
since C may be taken to be (the “Peirce complement”) Ce := eRf ⊕ fRe⊕ fRf .

The advantage of the corner ring definition above lies in its simplicity and flex-
ibility. Unlike the case of Peirce corners, a general corner S ⊆ R may contain the
identity of R without being the whole ring: such S is called a unital corner of R.
Examples of unital corners are also ubiquitous in ring theory; for instance, they show
up as ring retracts, as the 0-th components of monoid graded rings or general crossed
products, and (in many significant cases) as rings of invariants with respect to group
actions on rings. Peirce corners and unital corners play a special role in our general
corner ring theory, since any corner is a unital corner of a Peirce corner, and also a
Peirce corner of a unital corner. On the other hand, the simple definition for cor-
ner rings in general provides a common axiomatic ground for understanding Peirce
corners and unital corners simultaneously.

A nice feature of general corner rings is their very tractable functorial behavior.
This is expounded in §2, where we prove (among other things) the transitivity and
descent properties of corners ((2.3) and (2.4)). We also characterize Peirce corners
and unital corners, respectively, by using properties of their complements ((2.10) and
(2.14)). This work, in part, brings forth a main theme of the present paper, namely,
that the properties of the complements are as important as those of the corner rings
themselves. For another simple illustration, if R = S ⊕ C as in the definition of
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corner rings above, then C · C = 0 amounts to R being a “trivial extension” of S,
while C ·C ⊆ S amounts to R being a Z2-graded ring, with 0-component S and 1-
component C. These and various other examples of corner rings are given in §3, where
we draw freely from the many constructions in commutative and noncommutative ring
theory.

The general axiomatic formulation of corner ring theory led to some interesting
concepts that seemed to have escaped earlier notice. For instance, in studying a
general corner ring S, it is natural to ask when S has a unique complement, or
when S has a complement that is an ideal in the ambient ring R. These conditions
define the notions of “rigid corners” and “split corners” respectively. For instance,
rigid corners occur naturally in the study of crossed products (see (3.6)). In the case
of Peirce corners Re = eRe, (2.8) shows that we have automatic rigidity (that is,
Ce = eRf ⊕ fRe ⊕ fRf is the only complement for Re). However, Re need not
split in general; we show (in (4.5) and (4.9)) that it does iff e(RfR)e = 0 (where
f = 1 − e), iff any composition of R-homomorphisms eR → fR → eR is zero.
In this case, we say that the idempotent e is split : this seems to be a useful new
notion on idempotents that is worthy of further study. For instance, 1-sided semicen-
tral idempotents (used extensively in studying the triangular representation of rings)
are always split, but split idempotents need not be 1-sided semicentral (see (4.10),
(4.15)). Incidentally, Peirce corners arising from 1-sided semicentral idempotents are
precisely corner rings that are 1-sided ideals, and Peirce corners arising from central
idempotents are precisely corner rings that are 2-sided ideals ((2.11) and (2.12)). All
of these results serve to show how nicely the classical Peirce corners fit into the general
theory of corner rings.

The last section of the paper (§5) is devoted to the aforementioned theme that
any corner can be represented as a unital corner of a Peirce corner, and also as a
Peirce corner of a unital corner. Along with this work, we prove several results giving
a one-one correspondence between the complements of certain pairs of corner rings;
see (5.1) and (5.10). The former shows, for instance, that a corner S is rigid in R
iff it is rigid in some (or in all) Peirce corner(s) of R containing S.

The conference lecture given in Lisbon (on which this paper is based) also reported
on some of the applications of the corner ring theory. This part of our work will
appear later in a sequel to this paper, [La4], in which we shall study the multiplicative
structure of corner rings and various descent problems of ring-theoretic properties.
Some further applications of the viewpoint of corner rings are presented in [LD].

Throughout this note, R denotes a ring with an identity element 1 = 1R, and by
the word “subring”, we shall always mean a subgroup S ⊆ R that is closed under
multiplication (hence a ring in its own right), but with an identity element possibly
different from 1R. If 1R happens to be in S (so it is also the identity of S), we
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say that S is a unital subring of R. Other general ring-theoretic notations and
conventions in this paper follow closely those used in [La1] and [La3].

§2. Different Types of Corner Rings

We introduce the following general definition of a “corner” in a ring R.

(2.0) Definition. A ring S ⊆ R (with the same multiplication as R, but not
assumed to have an identity initially) is said to be a corner ring (or simply a corner)
of R if there exists an additive subgroup C ⊆ R such that

(2.0)′ R = S ⊕ C, S · C ⊆ C, and C · S ⊆ C.

In this case, we write S ≺ R, and we call any subgroup C satisfying (2.0)′ a com-
plement of the corner ring S in R.

Of course, in general, such a complement C is far from being unique. For instance,
if R contains Z as a unital subring, then any additive subgroup C ⊆ R such that
Z⊕C = R is a complement of Z in R in the sense of (2.0). If a corner S of a ring
R happens to have a unique complement, we shall call S a rigid corner of R, and
write S ≺rR.

Proposition 2.1. A ring S ⊆ R is a corner of R iff the inclusion map S ↪→ R
has a splitting τ : R→ S that is both left and right S-linear.1

Proof. If τ : R → S exists, one checks easily that C := ker(τ) satisfies (2.0)′, so
S≺R. Conversely, if S≺R, with a complement C, the inclusion map S ↪→ R splits
by the map τ : R→ S given by τ(s+ c) = s for s ∈ S and c ∈ C. For s0 ∈ S, we
have

τ(s0(s+ c)) = τ(s0s+ s0c) = s0s = s0τ(s+ c)

since s0s ∈ S and s0c ∈ C. Thus, τ is left S-linear, and a similar check shows that
τ is also right S-linear.

The following easy proposition shows that a corner ring of any ring R must have
an identity (although this may not be the identity of R).

(2.2) Proposition. Let S ≺ R, with a complement C, and let 1 = e + f , where
e ∈ S and f ∈ C. Then e is an identity of the ring S. In particular, the decom-
position 1 = e + f is independent of the choice of the complement C, and e, f are
complementary idempotents in R.

1We could have called τ a splitting in the category of (S, S)-bimodules if, by the word “bimod-
ule”, we mean a bimodule that is not necessarily unital on either side.
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Proof. For any s ∈ S, s = s · 1 = se + sf . Since s, se ∈ S and sf ∈ C, we have
s = se. Similarly, s = es, so e is an identity for S. Since the identity element of S
is unique, the remaining statements in the Proposition follow immediately.

The next two propositions serve to show the robustness of our chosen definition
of corners in rings.

(2.3) Proposition. (Descent) Let S ≺ R, with a complement C.

(1) If S ′ is any subring of R containing S, then S ≺ S ′ (with complement C∩S ′).

(2) If R ′ is any subring of R containing C, then S ∩ R ′ ≺R ′ (with complement
C).

Proof. (1) Let C0 = S ′ ∩ C. Then S ′ = S ⊕ C0, and

S C0 ⊆ S ′ ∩ S C ⊆ S ′ ∩ C = C0 .

By symmetry, we have also C0 S ⊆ C0. This shows that S ≺ S ′, with a complement
C0. (2) is proved similarly.

(2.4) Proposition. (Transitivity) Suppose S≺S ′ and S ′≺R. Then S ≺R. If
S≺rR, then S≺rS

′.

Proof. Let C0 be a complement of S in S ′ and C ′ be a complement of S ′ in R.
Then, for C := C0 + C ′, we have S ⊕ C = R. Moreover,

S C ⊆ S C0 + S C ′ ⊆ C0 + S ′C ′ ⊆ C0 + C ′ = C,

and similarly C S ⊆ C. Thus, S≺R, with a complement C. Now assume S≺r R.
If C1 is another complement of S in S ′, then C1 ⊕ C ′ is also a complement of S
in R. Therefore, C0⊕C ′ = C1⊕C ′. Contracting these to S ′, we see that C0 = C1,
so S≺rS

′.

Remark. If S ≺ R, a subring S ′ ⊆ R containing S need not be a corner of R. For
instance, let S = Z, and R = Z [x] with the relation x2 = 0. Certainly, S ≺ R, but
the subring S ′ = Z⊕ 2 Zx is not a corner of R. (If S ′ has a complement C ′ in R,
take a nonzero element f = a+ bx ∈ C ′. Then 2f = 2a+2bx ∈ S ′∩C ′ = 0 implies
that f = 0, a contradiction.) For some cases in which we can infer that S ′ ⊇ S is a
corner in R, see (5.9).

An easy consequence of (2.3) and (2.4) is the following.

(2.5) Corollary. If S ⊆ S ′ are both corners of a ring R, then every complement
C ′ for S ′ in R can be enlarged to one for S.
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Proof. By (2.3)(1), we know that S≺S ′, so we can fix some complement C0 of S
in S ′. By the proof of (2.4), C0 ⊕C ′ is a complement of S: this is the complement
we seek, since it contains C ′.

In view of (2.5), it is natural to ask the following

(2.6) Question. If S ⊆ S ′ are both corners of a ring R, does every complement
C for S in R contain some complement for S ′ ?

In general, the answer is “no”. We construct a counterexample as follows. For
any field k, let R be the commutative local ring k [x] with the relation x4 = 0, and
let S = k, S ′ = k [x2]. Then R has k-basis {ei}, where

e1 = 1, e2 = x2, e3 = 1 + x, and e4 = 1 + x3.

Thus, the span C of e2, e3, e4 is a complement to S in R. Assume, for the moment,
that C contains a complement C ′ to S ′. Since R = S ′ ⊕ xS ′, we have C ′ ∼=
R/S ′ ∼= S ′ as S ′-modules, so there exists an element y ∈ C ′ such that C ′ has a
k-basis {y, x2y}. Write y = ae2 + be3 + ce4, where a, b, c ∈ k. Then

x2y = x2 [ ax2 + b (1 + x) + c (1 + x3) ]

= (b+ c)x2 + bx3

= −be1 + (b+ c)e2 + be4

implies that b = 0 since x2y ∈ C ′ ⊆ C. But then x2y = ce2 ∈ S ′, which is a
contradiction. This shows that C does not contain any complement of S ′ in R.

In spite of examples such as the above, it turns out that Question (2.6) has an
affirmative answer if one of the corners S, S ′ in question is a Peirce corner. Before
we come to the proof of this (in (2.9)), let us first prove a key lemma on complements
of general corner rings.

(2.7) Lemma. Let S≺R, with identity e and complement C, and let r ∈ R. Then
r ∈ C iff ere ∈ C. In particular, ere = 0 =⇒ r ∈ C.

Proof. The “only if” part follows from (2.0)′. For the “if” part, assume that ere ∈ C,
and write r = s+ c, where s ∈ S and c ∈ C. Then

s = ese = e(r − c)e = ere− ece ∈ C

implies that s = 0. Thus, r = c ∈ C.

We now come to the following basic result on Peirce corners.

(2.8) Theorem and Definition (Peirce Corners). Let e, f be complementary
idempotents in a ring R. Then:
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(1) Re := eRe ≺R; it is the largest subring (resp. corner) of R having e as identity
element.

(2) Re ≺rR (that is, Re is rigid in R), with a unique complement

(2.8)′ Ce := fRe⊕ eRf ⊕ fRf = {r ∈ R : ere = 0} .

We shall call Re the Peirce corner of R (arising from the idempotent e), and call
Ce its Peirce complement. The notations Re and Ce will be fixed in the sequel of
this paper, and we shall use the notation S ≺P R to refer to the fact that S is a
Peirce corner of R.

(3) Re ∩R ′ ≺P R
′ for any subring R ′ ⊆ R containing e.

(4) (Transitivity of Peirce Corners) For any subring S ⊆ Re, S ≺P Re iff S ≺P R.

Proof. (1) By Peirce’s theory2, the sum in (2.8)′ is direct, and we have R = Re⊕Ce.
An easy calculation shows that

(2.8)′′ ReCe = eRf ⊆ Ce , and CeRe = fRe ⊆ Ce ,

so Re ≺ R, with a complement Ce. If S is any subring of R having e as its identity,
then for any s ∈ S, we have s = ese ∈ Re, so S ⊆ Re.

(2) Consider any complement C to Re. Let K = {r ∈ R : ere = 0}. Clearly,
Ce ⊆ K, and by (2.7), K ⊆ C. Since Ce and C are both complements of Re, the
inclusions Ce ⊆ K ⊆ C must all be equalities! In particular, Re≺rR.

(3) Since e ∈ R ′, eR ′e ⊆ R ′∩eRe. On the other hand, for any r′ ∈ R ′ of the form
ere (for some r ∈ R), we have r′ = er′e ∈ eR ′e. Therefore, Re ∩R ′ = R ′

e≺P R
′.

(4) The “if” part follows from (3). For the “only if” part, assume that S≺P Re.
Then S = e′Ree

′ where e′ is an idempotent in Re. But then e′e = e′ = ee′, so
e′Ree

′ = e′(eRe)e′ = e′Re′≺P R.

(2.9) Corollary. Let S ⊆ S ′ be both corners of R, with complements C and C ′

respectively. If one of S, S ′ is a Peirce corner of R, then C ′ ⊆ C. (In particular,
(2.6) has an affirmative answer if one of S, S ′ is a Peirce corner of R.)

Proof. First assume that S = eRe, for some idempotent e ∈ R. Since Re is rigid,
we have here C = Ce . By (2.5), C ′ can be enlarged to a complement of S = Re,
which must be Ce . Thus, C ′ ⊆ Ce = C. Next, assume instead, that S ′ = e′Re′,
for some idempotent e′ ∈ R. Here, C ′ = Ce′ . Let e be the identity of S. Since
e ∈ S ⊆ S ′, we have ee′ = e′e = e. For any r ∈ C ′ = Ce′ , we have e′re′ = 0,
and hence ere = ee′re′e = 0. By (2.7), this implies that r ∈ C. Thus, C ′ ⊆ C, as
desired. The last conclusion of (2.9) is now obvious.

2For an exposition, see [La1: p. 308].
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For the corollary above, the following remark is relevant. In the first part of
the result, the argument would have worked as long as the corner S is rigid. But
for the second part of the result, we do require that the corner S ′ be Peirce. If
S ′ is only rigid, the desired conclusion C ′ ⊆ C need not hold. For instance, if
R = R{1, i, j, k} is the division ring of the real quaternions, then S = R ≺ R
is contained in S ′ = R{1, i} ≺ R. Here, C ′ := R{j, k} is a complement of S ′,
C = R{i, j, 1 + k} is a complement of S, but C ′ 6⊆ C. (It is easy to see that S ′

here is indeed rigid in R. For a more general fact, see (3.6) below.)

We can give some easy characterizations of Peirce corners, as follows.

(2.10) Proposition. For S≺R with identity e, the following are equivalent:

(1) S ≺P R;
(2) S has a complement C such that eCe = 0;
(3) the subring S ⊆ R is “hereditary”, in the sense that sRs′ ⊆ S for all s, s′ ∈ S.

Proof. (1) ⇒ (2) follows by taking C to be a Peirce complement (in case S≺P R).

(2) ⇒ (1). If C is as in (2), then

eRe = e(S + C)e = eSe+ eCe = eSe = S =⇒ S = Re ≺P R.

(1) ⇒ (3). If S = Re, we have s = es and s′ = s′e for any s, s′ ∈ S. Therefore,
sRs′ = esRs′e ⊆ eRe = S.

(3) ⇒ (1). It suffices to assume only sRs ⊆ S for all s ∈ S. For, if so, then e ∈ S
implies that eRe ⊆ S, and we must have equality here since S = eSe ⊆ eRe.

After my lecture at the Lisbon Conference, Professors J. Okniński and F. Perera
both pointed out to me the importance of the notion of hereditary subalgebras in
algebra and in analysis. This prompted me to include the result (3) above, according
to which the hereditary corner rings (in our general sense) are precisely the classical
Peirce corner rings.

Next, we shall characterize corners in R that are one-sided ideals. These turn out
to be necessarily Peirce corners, but they are Peirce corners of a special kind. To see
this, let us first recall some standard definitions in the theory of idempotents. In [Bi],
[BH], and [HT], an idempotent e ∈ R with complementary idempotent f = 1− e is
said to be left semicentral if fRe = 0, and right semicentral if eRf = 0. Take, for
instance, the former: it is easy to show that

(∗)
fRe = 0 ⇐⇒ f(ReR)e = 0

⇐⇒ ere = re (∀ r ∈ R) ⇐⇒ eRe = Re
⇐⇒ eR is an ideal ⇐⇒ Rf is an ideal,

so each of these conditions is a characterization for e to be a left semicentral idem-
potent. A similar remark applies to right semicentral idempotents.
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(2.11) Proposition. For a corner S ≺ R with identity e and complement C, the
following are equivalent:

(1) S is a left ideal in R ;
(2) C · S = 0 ;
(3) e is a left semicentral idempotent in R and S = Re.

Proof. (1) ⇔ (2). If S is a left ideal, then C · S ⊆ S ∩ C = 0. Conversely, if
C · S = 0, then R · S = (S + C) · S = S · S = S, so S is a left ideal.

(3) ⇒ (1). If S = Re with e left semicentral, then by (∗) above, S = eRe = Re, so
it is a left ideal.

(1) ⇒ (3). If S is a left ideal, then e ∈ S yields Re ⊆ S ⊆ eSe ⊆ eRe. There-
fore, equality holds throughout, so S = eRe, and Re = eRe implies that e is left
semicentral by (∗).

If the idempotent e is both left and right semicentral, then re = ere = er for all
r ∈ R, so e is in fact central. Then Re = eR and Ce = Rf = fR are both ideals
of R, so R is a ring direct product Re ×Rf . In this case, we call Re = eR a direct
Peirce corner of R. We can thus conclude:

(2.12) Corollary. A corner S≺R is a direct Peirce corner iff S is an ideal of R.

We move on now to consider another important type of corner rings.

(2.13) Definition (Unital Corners). Let S be a corner of R, with identity e.
We say that S is a unital corner (and write S ≺u R) if e = 1 (that is, if S is a
unital subring of R).

It is easy to see that S ≺P R and S ≺u R iff S = R. In parallel to (2.10), the
following is a characterization of unital corners.

(2.14) Proposition. For S≺R with an identity e, the following are equivalent:

(1) S ≺uR;

(2) S has a complement C with eCe = C;

(3) every complement C of S satisfies eCe = C.

Proof. (1) ⇒ (3) is clear, since e = 1 under (1). (3) ⇒ (2) is also clear, since a
complement of S always exists. To prove (2) ⇒ (1), suppose S has a complement C
with eCe = C. Then, e acts as the identity map by left and by right multiplication
on C, as well as on S. This clearly implies that e = 1; that is, S≺uR.

We shall now introduce two more kinds of corner rings.

(2.15) Definition (Split and Rigid-Split Corners). A corner S in R is called
a split corner (written S ≺sR) if it has a complement C that is an ideal in R. Note
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that, in view of (2.0)′, this is equivalent to S having a complement C that is closed
under multiplication. In this case, we have a unital ring isomorphism S ∼= R/C,
although, as a subring of R, S may still be not unital. If S≺sR happens to have a
unique ideal complement, we shall call it a rigid-split corner, and write S≺rsR.

A word of caution is necessary on this piece of terminology. If a corner S in R
is both rigid and split, then clearly S≺rsR. However, if S≺rsR, then S is split, but
it may not be rigid, as there may be other complements to S besides the guaranteed
unique ideal complement. For an example illustrating this situation, see (3.9) below.

For split corners, it is easy to verify the following analogues of (2.3) and (2.4) (for
descent and transitivity), and of (2.5).

(2.16) Proposition. (1) If S≺sR, then S≺sS
′ for any subring S ′ of R contain-

ing S. And, for any subring R ′ containing an ideal complement of S, S∩R ′≺sR
′.

(2) S ≺s S
′ and S ′≺sR imply S≺sR. If S≺rsR, then S≺rs S

′ for any subring
S ′ ⊇ S.

(3) If S ⊆ S ′ are both split corners of R, then any ideal complement of S ′ can be
enlarged into one for S.

Proof. (1) is obvious as an ideal complement C of S in R contracts to an ideal
complement of S in S ′, and C remains an ideal complement to S ∩ R ′ in R ′. To
prove (2), take C0 to be an ideal complement of S in S ′, and C ′ to be an ideal
complement of S ′ in R. Then, for the complement C := C0 + C ′ of S in R, we
have

RC = R (C0 + C ′) ⊆ (S ′ + C ′)C0 + C ′ ⊆ C0 + C ′ = C,

and similarly, CR ⊆ C. Thus, C is an ideal in R, so S ≺s R. The second part of
(2) can be proved in the same way as the second part of (2.4): in the argument there,
we simply replace complements by ideal complements. The proof for (3) follows by a
similar modification of that for (2.5).

Split unital corners in a ring R are very familiar objects in ring theory; they are
called “retracts” of R. On the other hand, split Peirce corners did not seem to have
received much attention; we shall study them in more detail in §4. Here, let us give
an example of a split corner that is neither unital nor Peirce.

(2.17) Example. Take a split unital corner S0 in some ring A, with an ideal

complement C0 6= 0, and let R =

(
A A
0 A

)
. Then, for S :=

(
S0 0
0 0

)
and C :=(

C0 A
0 A

)
, we have R = S⊕C, and a direct calculation shows that C is a complement

of S in R, with C · C ⊆ C. Thus, S≺sR, with the identity element e :=

(
1 0
0 0

)
.
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This is not the identity of R, so S is not a unital corner. It is also not a Peirce

corner, since Re =

(
A 0
0 0

)
properly contains S =

(
S0 0
0 0

)
.

In ring theory, there is a very useful construction of “trivial extensions”, whereby,
for any ring S and a unital (S, S)-bimodule C, a ring R := S ⊕ C is produced
in which S is a unital subring, C · C = 0, and the left/right multiplications of S
on C are given by the (S, S)-bimodule structure. Such a ring R is called a trivial
extension of S by C = SCS; see [La3: p. 37]. Clearly, S is a retract of R, and C is
a complement of S with a trivial multiplication. Note that R may also be viewed as

the unital subring of the triangular ring

(
S C
0 S

)
consisting of matrices of the form(

s c
0 s

)
, with s ∈ S and c ∈ C.

To relate the construction of trivial extensions to corner rings, we make the fol-
lowing:

(2.18) Definition (Trivial Corners). A corner S of a ring R is said to be a trivial
corner if it has a complement C with C · C = 0.

(2.19) Proposition. A trivial corner S of R is a retract of R, and R is a trivial
extension of S.

Proof. Say C is a complement of S with C ·C = 0. Then C is an ideal of R, so S
is a split corner. Let 1 = e+f , where e ∈ S and f ∈ C. Then f = f ·f ∈ C ·C = 0
leads to e = 1. Thus, S is a unital corner, and hence a retract of R. Here, under the
ring structure on R, C is a unital (S, S)-bimodule, and, for s, s′ ∈ S and c, c′ ∈ C:

(s+ c)(s′ + c′) = ss′ + sc′ + cs′,

so R is precisely the trivial extension of S by SCS .

In conclusion, let us also point out that standard constructions in ring theory
can be used to give various examples of new corners from old ones. We note for
instance the following three types of constructions, starting from any S ≺ R with a
complement C.

(2.20) For any integer n ≥ 1, it is routine to check that Mn(C) is a complement
to Mn(S) in A := Mn(R). Thus, Mn(S)≺A. If S ≺P R, say S = Re in R, then
Mn(S)≺P A. In fact, an easy calculation shows that Mn(S) = Ae, where e is viewed
as usual as the (idempotent) matrix eIn ∈ A. (The same applies to rings of upper
triangular matrices.)

(2.21) S [(xi)i∈I ] ≺ R [(xi)i∈I ]; a complement is given by C [(xi)i∈I ]. (The same
applies to power series constructions.)
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(2.22) For any (multiplicative) monoid G, the monoid ring S[G]≺R[G]; a comple-
ment is given by C[G].

§3. Examples of Unital Corners (and Their Complements)

Peirce corners are easy to find since they are as ubiquitous as idempotents in rings.
However, a Peirce corner cannot be unital unless it is the whole ring. In (3.1) below,
we shall collect some examples of unital corners (and their complements). Note that,
if R is a ring with only trivial idempotents {0, 1}, then any nonzero corner ring S
is necessarily unital. (The identity e of S is a nonzero idempotent, and so e = 1.)
One major difference between Peirce corners and unital corners is the following: by
(2.8)(2), Peirce corners are rigid, but, as we’ll see from the examples below, unital
corners need not be rigid, and split unital corners need not be rigid either.

(3.1) Examples.

(A) Let S be a central unital subring of R. If S is a self-injective ring or SR is
a semisimple S-module, then S ≺u R. In fact, in either case, we have R = S ⊕ C
for a suitable submodule C of SR. Since S is central, we have CS = SC ⊆ C, so
S≺uR.

(B) Let H be a subgroup of a group G. Then, for any ring k, kH ≺u kG. In
fact, a complement for kH can be taken to be C =

⊕
g/∈H kg.

(C) Let S be a unital subring of a nonzero ring R. If R is free as a left S-
module with a basis G containing 1 such that gS ⊆ Sg for every g ∈ G, then
S≺uR, with a complement

⊕
g 6=1 Sg. For instance, for any base ring k, take R to

be the polynomial ring k [x]. Then, for any n ≥ 1, S = k [xn]≺uR since R is a free
(left, right) S-module on the basis {1, x, . . . , xn−1}.

(D) For R = Mn(k) where k is any ring, let S be the subring of diagonal matrices
in R. Then S ≺u R, with a complement C given by the group of all matrices with
a zero diagonal. (It is easy to check that SC ⊆ C and CS ⊆ C.) It can be seen,
actually, that this is a special case of (C): for instance, for n = 3, we can take G in
(C) to be the 3-element set consisting of

I3 = e11 + e22 + e33, e12 + e23 + e31, and e13 + e21 + e32 .

(E) Another interesting special case of (C) above is a monoid ring R = S [G],
where G is any multiplicative monoid (and S is some ring). If G has an invertible
element g 6= 1, then the complement C :=

⊕
g 6=1 Sg (given in (C) above) is not an

ideal, since C · g−1 * C (if S 6= 0). Nevertheless, S is a split corner, since we can
choose, as another complement, the augmentation ideal

∑
g 6=1 S(g − 1). This shows

that not every complement of a split unital corner need to be an ideal. More generally,
if R is a ring graded by a monoid G, say R =

⊕
g∈GRg (with RgRh ⊆ Rgh for

all g, h ∈ G), then R1≺u R, with complement C :=
⊕

g 6=1Rg. If gh = 1 ∈ G can
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happen only if g = h = 1, then C is an ideal, so in fact R1≺sR. On the other hand,
if we consider the case G ∼= Z2, a Z2-graded ring corresponds exactly to a ring R
with a given unital corner S ⊆ R having a complement C such that C · C ⊆ S.

(F) Various twisted versions of the monoid ring example in (E) (of the “crossed
product” variety) also give examples of unital corners. We shall only mention (here
and in (G) below) two of the most basic types of examples. Let S be a ring with an
endomorphism σ : S → S, and let R be the skew polynomial ring S[x; σ], whose
elements have the form

∑
i aix

i (ai ∈ S), and are multiplied by the rule xa = σ(a)x.
Here, we have xiS ⊆ σi(S)xi for every i ≥ 0, so S≺uR, with a complement

C :=

{∑
i≥1

aix
i : ai ∈ S

}
=

∞⊕
i=1

S xi.

This complement is an ideal, so S ≺sR. This example serves to show the existence
of nonrigid split corners. For instance, taking σ = IdS, we can choose a new variable
y = x + a (with a in the center of S) and write R = S[y]. With respect to this
expression, C ′ =

⊕∞
i=1 Sy

i is another ideal complement of S. In case S has an
infinite center, this gives infinitely many ideal complements to S.

(G) Yet another interesting special case of (C) is the following example from the
theory of central simple algebras. Let R be a central simple algebra of degree d
over a field F containing a subfield K that is Galois over F of dimension d. It is
well-known that R can be written as a crossed product algebra

⊕
g∈G Kug, where

G = Gal(K/F ), with u1 = 1, ugk = g(k)ug, and uguh ∈ K∗ugh (for g, h ∈ G and
k ∈ K). In particular, we have ugK = Kug for all g ∈ G. Thus, K ≺u R, with
a complement C :=

⊕
g∈G\{1}Kug . More general crossed products (in the sense of

[Pa]) can be treated similarly.

(H) If R is a commutative ring, there is an interesting criterion for a unital subring
S ⊆ R to be a corner; namely,

(3.2) S ≺u R ⇐⇒ tr(SR) = S.

Here, the “trace ideal” tr(SR) is the sum of the images of all S-linear functionals
on the S-module R. This criterion is due to G. Azumaya and B. Müller; a proof of
it can be found in [La3: (2.49)]. From this, it can be shown that, if R is a finitely
generated projective module over S, or if SR is projective and S is a noetherian
ring, then S≺uR (see [La3: (2.50)]). Thus, for instance, if S is a Dedekind domain,
then S is a corner in any domain R ⊇ S that is finitely generated as an S-module.

(I) Let G be a finite group acting on a ring R, and let S = RG be the subring
of G-invariant elements of R. If |G|−1 exists in R, then S ≺u R. To see this, let
τ : R→ S be (the “averaging map”) defined by

(3.3) τ(r) = |G|−1 ·
∑
g∈G

rg ∈ S.
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This map clearly splits the inclusion S ↪→ R, and for s ∈ S, we have τ(sr) = sτ(r)
(since (sr)g = sgrg = s ·rg), and similarly τ(rs) = τ(r)s. Thus, S ≺u R by (2.1).3

Furthermore, S can be thought of, in two different ways, as a corner in the skew group
ring A := R ∗ G. Here, R ∗ G consists of (finite) formal sums

∑
g∈G rg g (rg ∈ R),

which are multiplied by using the rule gr = rg−1
g for r ∈ R and g ∈ G. Upon

identifying r ∈ R with r · 1 ∈ A, we have R≺uA (with complement
∑

g 6=1Rg), so
the transitivity property (2.4) implies that S≺uA. Secondly, let e be the idempotent
|G|−1

∑
g∈G g in A, and let

(3.4) ϕ : S → eAe be defined by ϕ(s) = es = se = ese (∀ s ∈ S).

It is easy to check that ϕ is a ring isomorphism: see [Mo: Lemma 2.1], or [Al]. Thus,
S = RG is also isomorphic to the Peirce corner eAe in A. These examples of corner
rings in R and in R ∗ G set the stage for some useful applications of corner ring
theory to the study of rings of the type RG; such applications will be more fully
explored in Part II of this paper ([La4]).

(J) If R is a finite von Neumann algebra and S is the center of R, then the
center-valued trace ∆ : R→ S is S-linear and is the identity on S (see [KR: (8.4.3)]).
Therefore, by (2.1), S is a (unital) corner of R.

Let us now give some examples of rigid unital corners, partly drawing from the
list of examples above. Specifically, consider the unital corners arising in the manner
of (3.1)(C). If R is a commutative ring, then in the notations there, we can produce
other complements for S by changing the given S-basis G = {1, g1, g2, . . . } to, say,
{1, s1 + g1, s2 + g2, . . . } (where si ∈ S). Therefore, we do not expect the unital
corner S to be rigid in this case. However, if R is noncommutative, our odds are
better, as the following three examples show.

(3.5) Example. The corner S ≺u R = Mn(k) in (3.1)(D) is rigid. To see this,
consider any complement C0 for S, and use the notations in (3.1)(D). Let a ∈ k,
and let i, j be two distinct indices in {1, . . . , n}. Then a eij = diag(b1, . . . , bn) +M
for some b1, . . . , bn ∈ k and M ∈ C0. Thus, M = a eij−

∑
` b` e``. Since eii, ejj ∈ S,

C0 contains the matrix

eiiM ejj = a eii eij ajj −
∑

`

b` eii e`` ejj = a eij .

This shows that C0 contains the group C of all matrices with a zero diagonal, and
hence C0 = C, proving that S is rigid in R = Mn(k).

3Analogues of this also exist for various actions of infinite groups G on R. In the case where
R is commutative, for instance, it is often possible to replace the averaging map τ in (3.3) by a
suitable “Reynolds operator” (an RG-linear retraction from R to RG). Cayley’s “Ω process” and
Weyl’s “unitarian trick” are among the best known examples of this in classical invariant theory.

14



(3.6) Example. The corner K≺uR in the crossed product example in (3.1)(G) also
turns out to be rigid. To see this, consider any complement C0 for K, and keep the
notations in (3.1)(G). To show that C0 = C, we exploit the same ideas used in the
usual proof for the simplicity of the crossed product algebra R. Given any g 6= 1
in G, decompose the element ug into a + c, where a ∈ K and c ∈ C0. Take any
element k ∈ K such that g(k) 6= k. Then C0 contains the element

kc− ck = (k ug − ka)− (ugk − ak) = kug − g(k)ug = (k − g(k))ug .

Since k− g(k) ∈ K∗, left multiplication of the above element by (k− g(k))−1 yields
ug ∈ C0. Thus, C0 contains C =

⊕
g∈G\{1}Kug, and hence C0 = C, proving that

K is rigid in R. (Again, the case of more general crossed products can be treated
similarly.)

(3.7) Example. Let k be any ring, and R = k〈x, y〉 with the relations yx = y2 = 0.
Then R = S ⊕ Sy, where S = k[x]. Here, C := Sy is an ideal with square zero,
so S is a trivial unital corner in R, with complement C. We claim that S is rigid.
Indeed, if D is another complement, let y = s + d, where s ∈ S and d ∈ D. Then
0 = yx = sx + dx implies that sx = 0, so s = 0, and y = d ∈ D. It follows that
C = Sy ⊆ SD ⊆ D, so C = D, proving that S≺rR.

Of course, there are good examples of rigid-split unital corners too. Some of the
most natural examples are given by the following result.

(3.8) Proposition. Let S be a (not necessarily unital) corner of a ring R, with a
complement C. If C = rad(R) (the Jacobson radical), Nil∗(R) (the lower nilradical),
or Nil∗(R) (the upper nilradical), then S≺rsR.

Proof. Suppose C ′ is another ideal complement of S. We would like to prove that
C ⊆ C ′, for then C ′ = C, and we’ll have S≺rsR. First assume that C = rad(R).
Let π : R → R/C ′ be the projection map modulo C ′. Then R/C ′ ∼= S ∼= R/C
implies that rad(R/C ′) = 0. Since the surjection π takes rad(R) into rad(R/C ′),
it follows that C = rad(R) ⊆ ker(π) = C ′, as desired. The two cases C = Nil∗(R)
or Nil∗(R) can be handled similarly.

(3.9) Corollary. (1) If a local ring (R, m) has a subring S that maps isomorphically
onto the residue division ring R/m, then S ≺rs R, with a unique ideal complement
m . (2) If a semiprime ring S≺R has a complement that is a nilpotent ideal in R,
then S ≺rs R. (In particular, a semiprime ring S is always a rigid-split corner in
any trivial extension of S.)

(3.10) Example. (3.9)(1) above gives a natural source for examples of rigid-split
corners that are not “rigid and split”. For instance, let R = Q [x], with the relation
x2 = 0. Then R is a local ring with maximal ideal Qx. By (3.9)(1), Q≺rsR, with
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a unique ideal complement Q·x. But Q is not a rigid corner; in fact, it has infinitely
many complements Q·(x− a) for a ranging over Q .

(3.11) Example. The conclusion in (3.9)(2) is in general not true if S is not
semiprime. For instance, if R = Z4[x] with the relation x2 = 0, then R is a trivial
extension of S = Z4 by its ideal complement C = Z4 ·x. Here, C ′ = Z4 ·(2̄ + x)
is easily checked to be another ideal complement to S (also with square zero, since
(2̄ + x)2 = 4̄ + 4̄x+ x2 = 0). Thus, S is not a rigid-split corner in R.

(3.12) Example. We close by mentioning that some examples of rigid-split (unital)
corners can also be gotten from group ring constructions in (E) above. For any
commutative ring k, the subring k is a rigid-split (unital) corner of a group ring
kG iff there is no nontrivial homomorphism from G to the group of units U(k). In
this case, the augmentation ideal in kG is the unique ideal complement for k. (The
proof of this is left as an easy exercise.) Thus, for instance, if G is a group with no
subgroup of index 2, then Z is a rigid-split unital corner in ZG.

§4. Split Peirce Corners

Once the notion of corners is formulated, we have the associated notion of split
corners, and in particular, split Peirce corners. Prior to this, however, split Peirce
corners did not seem to have been fully scrutinized. In this section, we shall prove a
few basic facts about split Peirce corners, some of which will be generalized later to
arbitrary split corners.

(4.1) Theorem. Given a Peirce corner Re (e = e2), let 〈Ce〉 be the ideal of R
generated by Ce. Then, for f = 1− e, we have the equations

(4.2) 〈Ce〉 = RfR = e(RfR)e⊕ Ce ,

and a ring isomorphism R/RfR ∼= eRe/e(RfR)e .

Proof. Since f ∈ Ce, clearly RfR ⊆ 〈Ce〉 . On the other hand, Ce ⊆ RfR, so
〈Ce〉 ⊆ RfR. This proves the first equality in (4.2). As for the second equality, the
inclusion “⊇” is clear, and “⊆” will follow if we can show that e(RfR)e ⊕ Ce is an
ideal of R. This is a routine check that we can safely leave to the reader. Finally,
e(RfR)e ∩ Ce ⊆ eRe ∩ Ce = 0, so the sum on the RHS of (4.2) is direct. The last
conclusion of the Proposition follows from the Noether Isomorphism Theorem, as
eRe+RfR = R, and eRe ∩RfR = e(RfR)e.

We record below a couple of natural consequences of (4.1).

(4.3) Corollary. Recall that an idempotent f ∈ R is said to be full if RfR = R.
This is the case iff e(RfR)e = eRe (where e = 1− f).
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Proof. This follows from the last conclusion of (4.1).

(4.4) Corollary. (1) ReR∩RfR = e(RfR)e⊕eRf⊕fRe⊕f(ReR)f . In particular,
the RHS is an ideal in R.
(2) We have a ring isomorphism:

R/[e(RfR)e⊕ eRf ⊕ fRe⊕ f(ReR)f ] ∼= (R/ReR)× (R/RfR).

Proof. (1) The inclusion “⊇” is clear. To prove “⊆”, consider any element r ∈
ReR ∩ RfR. Write r = a + b + c + d where a ∈ eRe, b ∈ eRf, c ∈ fRe and
d ∈ fRf . After modifying r by b + c ∈ eRf ⊕ fRe ⊆ ReR ∩ RfR, we are reduced
to handling the case r = a + d. Now a = r − d ∈ eRe ∩ RfR = e(RfR)e, and
d = r − a ∈ fRf ∩ ReR = f(ReR)f , so r ∈ e(RfR)e ⊕ f(ReR)f , which completes
the proof of (1).

(2) ReR + RfR is the unit ideal, since it contains e + f = 1. Thus, (2) follows
from (1) and the Chinese Remainder Theorem.

(4.5) Theorem (Split Idempotent Criteria). For any idempotent e ∈ R, the
following conditions are equivalent:

(1) Re≺sR;
(2) Re≺rsR;
(3) Ce is an ideal of R;
(4) e(RfR)e = 0;
(5) exeye = exye for all x, y ∈ R;
(6) the map ϕ : R → Re defined by ϕ(x) = exe (for any x ∈ R) is a (unital) ring
homomorphism.

If any of these conditions holds, we say that e is a split idempotent of R.

Proof. (1) ⇔ (2) ⇔ (3). By (2.8)(2), Re has a unique complement Ce. Thus, Re

has an ideal complement iff Ce is an ideal of R, in which case Re is automatically
rigid-split.

(3) ⇔ (4). Note that (2) holds iff 〈Ce〉 = Ce. By (4.2), this holds iff e(RfR)e = 0.

(4) ⇔ (5). This is clear since (4) amounts to ex(1− e)ye = 0 for all x, y ∈ R.

(5) ⇔ (6) is also clear, since ϕ is always additive (and unital), and (5) amounts to
the fact that ϕ is multiplicative.

(4.6) Corollary. Let e be a split idempotent, and let f = 1− e. Then (1) f is not
full unless e = 0, and (2) e is not full unless e = 1.

Proof. (1) If RfR = R, then (4.5)(4) implies that eRe = 0, and so e = 0. For (2),
assume that ReR = R. Then

fRe ⊆ (ReR)fRe ⊆ R·e(RfR)e = 0
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by (4.5)(4), and similarly, eRf = 0. Thus, e is a central idempotent. But then
R = ReR implies that e = 1.

As a quick example, in a matrix ring R = Mn(k) with n ≥ 2 and k 6= 0, the
matrix unit e := e11 is a nonsplit idempotent, and its complementary idempotent
f = e22 + · · ·+ enn is full. Note that, in some cases, we may have a partial converse
to (4.6)(1); for instance, for simple Peirce corners, we have the following.

(4.7) Corollary. If eRe is a simple ring, then e ∈ R splits iff f = 1− e is not a
full idempotent.

Proof. The “only if” part follows from (4.6) since e 6= 0. Conversely, if f is not
full, then by (4.3), e(RfR)e 6= eRe. Since e(RfR)e is an ideal of the simple ring
eRe, we must have e(RfR)e = 0, and so e splits by (4.5).

It turns out that the condition e(RfR)e = 0 in (4.5)(4) has another nice interpre-
tation in terms of R-module homomorphisms. To formulate the ideas more broadly,
we take the viewpoint that any ring R is the endomorphism ring of some (say right)
module over some other ring (e.g. the right module RR).

(4.8) Proposition. Let R = End(MA), where MA is a right module over some ring
A. Let M = P ⊕ Q be a direct sum decomposition of MA, and let e, f ∈ R be,
respectively, the projections of M onto P and Q with respect to this decomposition.
Then e(RfR)e = 0 iff the composition

P
α−→ Q

β−→ P

is zero for any A-homomorphisms α : P → Q and β : Q→ P .

Proof. Define a map ϕ : fRe → HomA(P,Q) by ϕ(g) = g |P . This is an additive
group isomorphism, since it has an inverse ϕ′ given by ϕ′(h) = h′ where h′ ∈ R
denotes the extension of h : P → Q ⊆ M with h′(Q) = 0. (It is easy to see
that h′ ∈ fRe.)4 Similarly, we have an additive group isomorphism ψ : eRf →
HomA(Q,P ) defined by restriction to Q. If we think of the isomorphisms ϕ and ψ
as “identifications”, the condition 0 = e(RfR)e = (eRf)(fRe) translates into the
statement that any composition of A-homomorphisms P → Q→ P is zero.

(4.9) Corollary. An idempotent e ∈ R with complementary idempotent f is split
iff any composition of R-homomorphisms eR→ fR→ eR is zero.

Proof. This follows by applying the Proposition to the case R = End (RR) and
taking B = eR, C = fR.

4This implies, incidentally, that the idempotent e is left semicentral in R iff HomA(P,Q) = 0.
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(4.10) Corollary. If e = e2 is left semicentral, then e and f = 1 − e are split
idempotents. Moreover, eRf = ReR ∩RfR is an ideal, and we have a ring isomor-
phism R/eRf ∼= eRe× fRf . (Thus, as long as eRf 6= 0, e, f are non-central and
non-full idempotents.)

Proof. From fRe = 0, we have of course e(RfR)e = f(ReR)f = 0. Thus, e and f
are both split according to (4.5).5 Furthermore, (4.4)(1) simplifies to ReR ∩RfR =
eRf , so eRf is an ideal of R. The isomorphism R/eRf ∼= eRe × fRf follows
from the Peirce decomposition (and is, in fact, a special case of the isomorphism in
(4.4)(2)).

Of course, the second part of this Corollary also follows easily from the usual

representation of R as a formal triangular ring

(
eRe eRf
0 fRf

)
, where eRf is viewed

as an (eRe, fRf)-bimodule in the obvious way (by multiplication in R). In general,
if S, T are rings and M = SMT is an (S, T )-bimodule, then the triangular ring

R :=

(
S M
0 T

)
has the property fRe = 0 for the complementary idempotents e =(

1S 0
0 0

)
and f =

(
0 0
0 1T

)
in R. Here, eRf =

(
0 M
0 0

)
6= 0 if M 6= 0.

The following examples show that, for two complementary idempotents e, f ∈ R,
the splittings of e and f are, in general, independent conditions. The same examples
also show that it is possible for e and/or f to be split without being left or right
semicentral.

(4.11) Example. Take a ring A with a pair of complementary idempotents ε, ε′

such that ε′Aε = 0 6= εAε′ (that is, ε is left semicentral but not right semicentral),

and let R =

(
A A
0 A

)
. Consider in R the complementary idempotents e =

(
ε′ 0
0 0

)
and f =

(
ε 0
0 1

)
. These are not one-sided semicentral in R, since

fRe =

(
εAε′ 0

0 0

)
6= 0, and eRf =

(
ε′Aε ε′A

0 0

)
=

(
0 ε′A
0 0

)
6= 0.

Taking the products of these, we see that e(RfR)e = 0, but f(ReR)f 6= 0 (using
εAε′ 6= 0). Thus, e is a split idempotent in R, while its complementary idempotent
f is not split. More explicitly, we can check that the Peirce corner

eRe =

(
ε′Aε′ 0

0 0

)
has the complement Ce =

(
εA A
0 A

)
,

5Alternatively, Ce = eRf⊕fRf = Rf and Cf = eRe⊕eRf = eR are both ideals by the display
(∗) prior to (2.11), which gives the same conclusions.
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which is an ideal since εA is an ideal in A . On the other hand, the Peirce corner

fRf =

(
εAε εA
0 A

)
has the complement Cf =

(
Aε′ ε′A
0 0

)
,

which is not an ideal since ε′A is not an ideal in A.

For a more concrete construction, let A = T2(k) be the ring of 2 × 2 upper

triangular matrices over a nonzero ring k, and let ε =

(
1 0
0 0

)
, ε′ =

(
0 0
0 1

)
in A.

Here, indeed, ε′Aε = 0 6= εAε′. The construction above yields the ring

(4.12) R = { (aij) ∈ T4(k) : a23 = 0} ⊆ T4(k),

with the complementary idempotents e = e22 and f = e11+e33+e44 , where {eij} are
the matrix units. Here, the split corner eRe is just k ·e22 , with the ideal complement

(4.13) Ce = { (aij) ∈ T4(k) : a22 = a23 = 0} ⊆ T4(k).

On the other hand, the nonsplit corner fRf is

(4.14)


k 0 k k
0 0 0 0
0 0 k k
0 0 0 k

 , with the (non-ideal) complement Cf =


0 k 0 0
0 k 0 k
0 0 0 0
0 0 0 0

 .

(4.15) Example. A suitable modification of the construction above can be used to
produce complementary idempotents e, f (in a new ring R) that are both split, but
not 1-sided semicentral. For k 6= 0 as above, let

(4.16) R = { (aij) ∈ T4(k) : a12 = a23 = a34 = 0} ⊆ T4(k),

and take e = e11 + e44, f = e22 + e33. Then eRf = ke13 6= 0, and fRe = ke24 6= 0,
so e, f are not 1-sided semicentral. But here,

e(RfR)e = k · e13e24 = 0, and f(ReR)f = k · e24e13 = 0,

so e, f are both split. The Peirce corners

eRe = ke11 + ke14 + ke44 , and fRf = ke22 + ke33

have, respectively, the ideal complements

Ce = ke13 + ke22 + ke24 + ke33 , and Cf = ke11 + ke13 + ke14 + ke24 + ke44 .

§5. Reduction of Corners, and Correspondence of Complements
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In this section, we shall prove a number of results that will clarify the special
roles played by Peirce corners and unital corners in the general theory of corner rings.
Specifically, we shall see that any corner of a ring R is a unital corner of a Peirce
corner of R, and is also a Peirce corner of a unital corner of R. The significance
of this is that, in many cases, the consideration of corners can be reduced to the two
cases of Peirce corners and unital corners. We recall from (2.17), however, that there
are examples of corners that are neither Peirce corners nor unital corners.

We start with the theme that any corner is a unital corner of a Peirce corner. This
is quite easy to see: if S≺R, say with identity e0, then by (2.3)(1), S≺uReo ≺P R.
Indeed, Reo = e0Re0 is the smallest Peirce corner of R containing S; we shall call it
the associated Peirce corner of S. In general, by considering any Peirce corner Re

containing S, we have the following reduction result relating the complements of S
in R and in Re , which follows easily from (2.9).6

(5.1) Theorem. Given Re ⊇ S ≺ R, let C be the set of complements for S in
R, and C ′ be the set of complements for S in Re. Then there is a natural one-one
correspondence between C and C ′, defined by C 7→ C ∩ Re, and C ′ 7→ C ′ ⊕ Ce

(where Ce denotes the Peirce complement of Re , as defined in (2.8)′). In particular,
S ≺rR iff S ≺rRe.

The next step is to try to develop some criteria for the corner S above to split in
R. Again, we try to make a reduction to the splitting of S in any given Peirce corner
Re containing S (for instance, the associated Peirce corner Reo of S). For this, we
shall use (4.1) and (4.5) as our blueprints, and try to extend them from the case Re

to the case S ≺ Re. [ In particular, if we choose e = e0 (the identity of S), we’ll
be reduced to the case of the splitting of a unital corner.] We start by taking any
complement C of S in R (that is, C ∈ C) and computing the ideal 〈C〉 generated
by C in R. Throughout, we let f = 1− e ; recall that f ∈ C by (2.2).

(5.2) Proposition. Let C ′ = C ∩Re so that C = C ′ ⊕ Ce (as in (5.1)). Then

(5.3) 〈C〉 = 〈C ′〉e +RfR ,

where 〈C ′〉e denotes the ideal generated by C ′ in the ring Re. In particular, C is
an ideal of R iff C ′ is an ideal of Re containing e(RfR)e.

Proof. Since f ∈ C and C ′ ⊆ C, the inclusion “⊇” is clear in (5.3). For the reverse
inclusion, let I := 〈C ′〉e + RfR, which contains C ′ ⊕ Ce = C. Thus, equality holds
in (5.3) if we can show that I is an ideal in R. By left/right symmetry, it suffices
to show that R · I ⊆ I. Since R = S ⊕ C, this amounts to showing S · I ⊆ I and

6In particular, (5.1) can be applied to the associated Peirce corner Reo of S. In this case, there
is a slight simplification: for C ∈ C in (5.1), the contraction C ∩ Reo

can also be expressed as
e0Ce0.
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C · I ⊆ I. The former is immediate, since RfR is an ideal in R, and 〈C ′〉e is an
ideal in Re ⊇ S. For the latter, we need only show that C · 〈C ′〉e ⊆ I. But this is
clear since

C = C ′ ⊕ Ce ⊆ Re +RfR ,

and we have Re · 〈C ′〉e ⊆ 〈C ′〉e , and RfR · 〈C ′〉e ⊆ RfR ⊆ I.

If C is an ideal in R, then C ′ = C ∩ Re is an ideal in Re, and f ∈ C implies
that RfR ⊆ C, whence e(RfR)e ⊆ C ′. Conversely, assume that C ′ is an ideal of
Re containing e(RfR)e. By (5.3) and (4.1), we have

〈C〉 = 〈C ′〉e +RfR = C ′ + e(RfR)e+ Ce = C ′ + Ce = C,

so C is an ideal in R.

We are now ready to prove the following result on the characterization of split
corners.

(5.4) Theorem (Split Corner Criteria). Let Re ⊇ S ≺ R as before, and let
f = 1 − e. Then S splits in R iff it has an ideal complement in Re containing
e(RfR)e, iff S∩e(RfR)e = 0 and the image of S under the map S → Re/e(RfR)e
is a split corner of the ring Re/e(RfR)e. In particular, S ≺rsR iff S∩e(RfR)e = 0
and the image of S under the map S → Re/e(RfR)e is a rigid-split corner in
Re/e(RfR)e.

Proof. It is sufficient to prove the first “iff” statement. If S≺sR, choose for it an
ideal complement C. By (5.2), e(RfR)e ⊆ C ′ := C ∩Re, and so

S ∩ e(RfR)e ⊆ S ∩ C ′ ⊆ S ∩ C = 0.

Conversely, assume S has an ideal complement J in Re containing e(RfR)e. Let
C := J⊕Ce, which is a complement for S in R. Since C ′ := C∩Re = J ⊇ e(RfR)e,
(5.2) implies that C is an ideal in R, so we have S≺sR, as desired.

(5.5) Corollary. If a Peirce corner Re contains a nonzero split corner S of R,
then f = 1− e is not a full idempotent in R.

Proof. By (5.4), S ∩ e(RfR)e = 0. If f was a full idempotent, this would give
0 = S ∩ eRe = S.

Remark. If S≺sRe and Re≺sR, then (2.16)(2) implies that S≺sR. However, the
converse is not true; namely, S ≺s R implies only S≺sRe , but in general does not
imply that Re≺sR. We shall demonstrate this with an example below.

(5.6) Example. Let k is a field of characteristic 6= 2, and let σ be the k-algebra
automorphism on A = k [x] defined by σ(x) = −x. Let R = A⊕Ay, which is made
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into a ring using the rules y2 = 1, and yα = σ(α)y for every α ∈ A. (In other words,
R is the quotient obtained from the skew polynomial ring A [y; σ] by factoring out
the ideal generated by y2−1.) Let e, f be the complementary idempotents (1+y)/2
and (1−y)/2 in R. In the factor ring R/RfR, y is identified with 1, so every α ∈ A
is identified with σ(α). From this, it is easy to see that R/RfR ∼= k [x]/(x) ∼= k.
Thus, e /∈ RfR (in particular f is non-full), and the subring S := k · e ≺s R, with
an ideal complement RfR. However, by an easy computation,

exfxe =
1

8
(1 + y)x(1− y)x(1 + y) = x2(1 + y)/2 = x2e 6= 0,

so e(RfR)e 6= 0. Thus, the associated Peirce corner Re of S fails to split, although
S itself splits. A similar calculation shows that the other Peirce corner Rf is also
non-split.

We now introduce the last type of corners in this paper, which is a certain weak-
ening of split corners.

(5.7) Definition. We say that a corner S≺R (with identity e) is semisplit in R
(written S ≺ss R) if S is split in its associated Peirce corner Re = eRe. A split
corner is always semisplit, though not conversely. For instance, any Peirce corner is
always semisplit, but not necessarily split. (For unital corners, of course, “split” and
“semisplit” are synonymous.)

Note that, in this definition, the identity of the corner S ≺ R is denoted by
e; in other words, the earlier notation e0 is now replaced simply by e. This will
be more convenient since, in the following, we shall only work with the associated
Peirce complement Re of S (instead of any Peirce complement containing S). The
following result offers a couple of easy criteria for semisplit corners.

(5.8) Theorem (Semisplit Corner Criteria). For a corner S≺R with identity
element e, the following are equivalent:

(1) S ≺ssR ;

(2) S has a complement C in R such that ReC ⊆ C and CRe ⊆ C;

(3) S has a complement C in R such that (Re)C ⊆ C and C(eR) ⊆ C.

Proof. (1) ⇒ (2). Take an ideal complement I for S in Re. Then C := I ⊕ Ce is
a complement for S in R. We have

ReC ⊆ Re I +ReCe ⊆ I + Ce = C,

and similarly, CRe ⊆ C, as desired.

(2) ⇒ (3). Suppose C exists as in (2). By (2.9), we have C ⊇ Ce. Therefore,

(Re)C = (Re + fRe)C ⊆ ReC + fR ⊆ C + Ce = C.
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Similarly, we can check that C(eR) ⊆ C.

(3) ⇒ (1). Suppose C exists as in (3). Its contraction C∩Re = eCe is a complement
of S in R. The hypotheses on C imply that Re(eCe) ⊆ e(ReC)e ⊆ eCe, and
similarly, (eCe)Re ⊆ eCe. Thus, eCe is an ideal in Re, showing that S ≺ssR.

Next, we take up the second theme of this section, which is that of realizing
an arbitrary corner ring as a Peirce corner of a unital corner. This requires some
nontrivial work. We begin more generally with the following observation.

(5.9) Lemma. Let S and T be subrings of R with identities e, f such that ef =
fe = 0. Then

(1) S + T ≺R iff S≺R and T ≺R;
(2) S + T ≺rR iff S≺rR and T ≺rR.

Proof. First note that ST = (Se)(fT ) = 0, and TS = (Tf)(eS) = 0. Second,
S ∩ T = 0, for, if r ∈ S ∩ T , then r = er = e(fr) = 0. Therefore, S ′ := S + T ⊆ R
is a subring with identity e + f , and S and T are direct Peirce corners of S ′. For
convenience, we may identity S ′ with the ring direct product S × T .

(1) The “only if ” part follows from the transitivity of corners. For the “if” part,
assume that S, T ≺ R, say with complements C, D respectively. For any t ∈ T ,
we have ete = e(ft)e = 0, so (2.7) implies that t ∈ C. Thus, T ⊆ C, and hence
C = C ′ ⊕ T , where C ′ := C ∩D. Now we have

R = S ⊕ C = S ⊕ (T ⊕ C ′) = S ′ ⊕ C ′,

so C ′ will be a complement to S ′ if we can show that S ′C ′ ⊆ C ′ and C ′S ′ ⊆ C ′.
By symmetry, it suffices to show the former, which can be reduced to showing that
SC ′ ⊆ C ′ and TC ′ ⊆ C ′. These in turn will follow if we can show the following
four inclusions:

SC ⊆ C, SD ⊆ D, TC ⊆ C, and TD ⊆ D.

The first and the fourth are given. For the third, let t ∈ T and c ∈ C, Then
e(tc)e = e(ft)ce = 0 ⇒ tc ∈ C by (2.7). Similarly, for s ∈ S and d ∈ D, f(sd)f =
f(es)df = 0 implies sd ∈ D, again by (2.7). This checks that S ′≺R, as desired.

(2) For the “only if” part, assume that S ′ ≺r R. Let C, D, and C ′ := C ∩ D
be as in (1) above. Since C ′ is a complement of S ′, it is uniquely determined. But
then the earlier equation C = C ′ ⊕ T shows that C is also uniquely determined.
Therefore, S ≺r R, and similarly, T ≺r R. The “if” part will follow from (5.10)(1)
below.

The last main result of this section is the following theorem, which is in some
sense parallel to (5.1) and (5.4).
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(5.10) Theorem. Let S, T be corners of R with identities e, f that are orthogonal
idempotents. By (5.9), we have S ′ := S×T ≺R. If T is rigid in R, with a (unique)
complement D, the following conclusions hold:

(1) there is a one-one correspondence between C , the set of complements for S in
R, and C ′ , the set of complements for S ′ in R, given by

α(C) 7→ C ∩D for C ∈ C, and β(C ′) = T ⊕ C ′ for C ′ ∈ C ′.

In particular, S≺rR (and T ≺rR ) =⇒ S ′≺rR.

(2) S ′≺sR iff S≺sR and T ≺sR. In this case, under the one-one correspondence
in (1), C ∈ C is an ideal in R iff the corresponding C ′ ∈ C ′ is an ideal in R; in
particular, S≺rsR iff S ′≺rsR.

Proof. (1) For C ∈ C, we have shown in the proof of (5.9) that C ∩ D ∈ C ′, so
α(C) ∈ C ′. On the other hand, for C ′ ∈ C ′, we have

R = S ′ ⊕ C ′ = S ⊕ (T ⊕ C ′).

Also, S · (T ⊕C ′) = ST +SC ′ = SC ′ ⊆ S ′C ′ ⊆ C ′, and similarly, (T ⊕C ′)S ⊆ C ′.
Thus, β(C ′) := T ⊕ C ′ is a complement to S; that is, β(C ′) ∈ C. Now, for C ∈ C,
the proof of (5.9) gives

β(α(C)) = β(C ∩D) = (C ∩D)⊕ T = C,

so β ◦α is the identity on C. Finally, consider any C ′ ∈ C ′. Since T ⊆ S ′ are both
corners of R, C ′ can be “enlarged” into a complement for T (by (2.5)). Thus, the
rigidity assumption on T forces C ′ ⊆ D. Therefore,

α(β(C ′)) = α(T ⊕ C ′) = (T ⊕ C ′) ∩D ⊇ C ′.

Since C ′ and α(β(C ′)) are both complements of S ′, this implies that α(β(C ′)) =
C ′, so α◦β is also the identity on C ′. We have thus shown that α and β are mutually
inverse one-one correspondences between C and C ′. This, of course, implies the last
statement in (1).

(2) Assume that S ′≺sR. Since S ′ = S×T , (2.16)(2) implies that S≺sR and
T ≺sR. In fact, the proof of (2.16)(2) shows that, for any ideal complement C ′ ∈ C ′,
β(C ′) = C ′ ⊕ T is an ideal complement to S. Conversely, assume that S≺sR and
T ≺sR, and consider any ideal complement C ∈ C (for S in R). Since T is rigid,
T ≺s R implies that D is an ideal of R. Then α(C) = C ∩ D is the intersection
of two ideals, and is thus also an ideal. (In particular, S ′ ≺s R.) This proves the
one-one correspondence between the ideal complements in C and those in C ′, which,
of course, also gives the last conclusion of (2).

(5.11) Corollary. If e1, . . . , en are mutually orthogonal idempotents in R, then
Re1 × · · · × Ren is a rigid corner in R. Its unique complement is Ce ⊕

⊕
i6=j eiRej ,

where e := e1 + · · ·+ en .

25



Proof. Since each Rei
is rigid, the rigidity of Re1 × · · · × Ren follows from the

last conclusion of (5.10)(1), plus induction on n. The computation of the (unique)
complement of Re1 × · · ·×Ren is left to the reader. (Note that (3.5) is a special case
of the present result.)

To see how Theorem (5.10) applies to our “second theme” (of realizing a corner as
a Peirce corner of a unital corner), let us start with any corner S≺R, with identity
e. For the complementary idempotent f := 1 − e, we have ef = fe = 0, so the
(rigid) Peirce corner T := Rf = fRf satisfies the hypotheses of (5.9) and (5.10).
Since e + f = 1, (5.9) implies that S ′ := S + T = S × Rf is a unital corner of R,
and so S is a (direct) Peirce corner of this unital corner. The map S 7→ S × Rf

is a canonical “suspension process” that produces a unital corner from an arbitrary
corner. As we shall see from the sequel of this paper [La4], this suspension process is
very useful in analyzing the behavior of the arbitrary corner S. To summarize, let
us restate our main conclusions (from (5.10)) about S × Rf , with the appropriate
amendments in the present special case.

(5.12) Corollary. For any corner S ≺R with identity e, the “suspension” S ′ :=
S ×Rf ( for f = 1− e) has the following properties:

(0) S ′ is a unital corner of R, containing S as a direct Peirce corner;

(1) the complements of S and those of S ′ are in one-one correspondence, with

(5.13) C (complement of S) 7→ C ∩ Cf = eCe⊕ eRf ⊕ fRe,

and C ′ (complement of S ′) 7→ C ′ ⊕Rf . In particular, S≺rR iff S ′≺rR; and

(2) S ′≺sR iff S≺sR and f is a split idempotent. In this case, under the one-one
correspondence in (1), ideal complements of S correspond to ideal complements of
S ′; in particular, S≺rsR iff S ′≺rsR.

Proof. In (2) of (5.10), the condition that T = Rf be split translates here into
the splitting of the idempotent f in (2) above. Besides this, the only other point
that requires an explanation is (5.13). Here, Cf is the Peirce complement of the
idempotent f ; that is, Cf = eRf ⊕ fRe ⊕ fRf . By (5.1), C = (C ∩ Re) ⊕ Ce =
eCe⊕ Ce . Therefore,

C ∩ Cf = (eCe⊕ Ce) ∩ Cf = eCe⊕ eRf ⊕ fRe ,

as claimed in (5.13).

Note Added in Proof. After the writing of this article, I received an interesting
email communication from Professor C.M. Ringel. In this communication, Professor
Ringel pointed out that the notion of “split corners” discussed in this article occurred
very naturally, and have in fact been used, in the representation theory of finite-
dimensional algebras. More specifically, in dealing with “controlled embeddings”
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in the consideration of the representation types of algebras, one encounters split
corners in certain endomorphism algebras. While I am able to expound on this
interesting connection, I was pleased to learn that representation theory provides
another interesting source of examples of split corners.
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