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Abstract. A polynomial f(t) in an Ore extension K[t; S, D] over a division
ring K is a Wedderburn polynomial if f(t) is monic and is the minimal poly-
nomial of an algebraic subset of K. These polynomials have been studied
in [LL5], [DL] and [LL4]. In the present paper, we continue this study and
give some applications to triangularization, diagonalization and eigenvalues
of matrices over a division ring in the general setting of (S, D)-pseudo-linear
transformations. In the last section we introduce and study the notion of
G-algebraic sets which, in particular, permits generalization of Wedderburn’s
theorem relative to factorization of central polynomials.

1. Introduction

This paper continues the study of Wedderburn polynomials started in [LL5].
Wedderburn polynomials are least left common multiple of linear polynomials of
the form t−a in (skew) polynomial rings over division rings. They can be factorized
linearly using Wedderburn’s method. Before describing the content of the paper let
us give a short account of the history of Wedderburn polynomials and Wedderburn’s
method thereby asserting their importance (for a more detailed survey the reader
is referred to [Ro2]).

Let K be a division ring with center F . Wedderburn proved in [We] that
the minimal monic polynomial fa(t) ∈ F [t] of an algebraic element a ∈ K can be
written as a product of linear factors in K[t]: fa(t) = (t−an)(t−an−1) · · · (t−a1).
Moreover he showed that a1, . . . , an are conjugate to a. The polynomial fa(t)
admits many such factorizations and all of them are obtained by what is called the
Wedderburn’s method. This method is basically a repeated use of the following
fact: if f = gh ∈ K[t] is such that f(a) = 0 but d := h(a) 6= 0 then g(dad−1) = 0.
Using the above, Wedderburn also proved that every division algebra K of degree
3 has a maximal subfield which is Galois over the center F of K. Using the same
method, Albert, in [A1], extended this result to division algebras of degree 4 and
showed, in [A2], that a finite dimensional division ring which is ordered as a ring is
commutative. In [Ja1], Jacobson used Wederburn’s method to obtain easy proofs
of Skolem-Noether and Hilbert 90 theorems. Other results that can be obtained by
Wedderburn’s method concern

• division rings with involutions.
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• the structure of the multiplicative group of a division ring (e.g. it is proved
in [RS2] that the multiplicative group of a division ring of degree 3 or 5
is solvable).

• reduced K-theory.
Recently Wedderburn polynomials have been used to present a generalized no-

tion of non commutative symmetric function without the help of quasi determinants
(Cf. [DL]). This presentation shows that Wedderburn’s method give back the non
commutative Vieta’s formula and Miura decomposition. Let us also mention that
Wedderburn polynomials sometimes appear under other names such as polynomi-
als with separate zeros (Cf. [Tr]) or polynomials with zeros in generic position
(Cf. [GGRW], [GR], [GRW]). This paper contains yet another application of the
Wedderburn polynomials: they can be used to characterize diagonalizable matrices
with coefficients in a division ring.

Let us now briefly describe the content of the paper. In the sequel R stands for
an Ore extension R = K[t; S, D], where K is a division ring, S an endomorphism
of K and D a S-derivation of K.

In Section 2 we recall some basic facts and notations from our previous paper
([LL5]).

In the third section we present various relations involving the rank of algebraic
sets and, using these, we find back some of the features of Wedderburn polynomials
presented in our previous work.

Section 4 is devoted to companion matrices. They show up naturally in the
study of the action of t· on R/Rf and are very useful tools while we characterize
when a product of W -polynomials is again a W -polynomial. This characterization
generalizes the (S, D)-metro equation from [LL5].

In Section 5 we analyse the problems of diagonalization and triangularization of
matrices over a division ring. We work in the general (K, S, D)-setting as described
above. We first consider the case of a companion matrix and then, supposing
S ∈ Aut(K), we analyse the case of a general square matrix via the companion
matrices of its invariant factors. In particular, we will show that a square matrix
A ∈ Mn(K) is (S,D)-diagonalizable (resp. (S, D)-triangularizable) if and only if
the invariant factors are Wedderburn polynomials (5.12) (resp. product of linear
polynomials (5.14)).

We also define and study left and right eigenvalues of a matrix A ∈ Mn(K)
and get analogues of classical results for commutative polynomials.

The last section is concerned with the notion of G-algebraic sets. They give,
in particular, another approach to the Wedderburn’s theorem on factorization of
central polynomials. In this last section we only consider the ”classical” case i.e.
we assume that S = Id and D = 0.

2. Recapitulation

Let us start with a brief review of basic definitions, notations and contents of
our previous paper ”Wedderburn polynomials over division rings, I”. We will refer
this paper by ”Wed1” (Cf. [LL5]). Let us start with a triple (K, S, D), where K
is a division ring, S is a ring endomorphism of K, and D is a (S, Id)-derivation
on K. The latter means that D is an additive endomorphism of K such that, for
a, b ∈ K, D(ab) = S(a)D(b)+D(a)b. In the sequel of the paper a (S, Id)-derivation
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will just be called a S-derivation. We will occasionally need the symmetric notion
of a (Id, σ)-derivation δ, where σ is an endomorphism of K and δ is an additive
map such that, for a, b ∈ K, δ(ab) = aδ(b) + δ(a)σ(b). In particular, when S is
an automorphism of K and D is an S-derivation, the map −DS−1 is a (Id, S−1)-
derivation.

In the general (K, S, D)-setting, we can form the Ore ring of skew polynomials
K[t; S, D]. More details about this ring and its properties can be found in the
introduction of ”Wed1” or in [Co3].

In case D = 0 (resp. S = Id), we write K[t;S] (resp. K[t; D]) for the skew
polynomial ring K[t; S, 0] (resp. K[t; Id, D]). Of course, when (S, D) = (Id, 0) (we
refer to this as the “classical case”), K[t; S, D] boils down to the usual polynomial
ring K[t] with a central indeterminate t.

Throughout this paper, we’ll write R := K[t;S,D]. R is a right euclidian
domain (hence, in particular, a left principal ideal domain). For f(t) ∈ R and
a ∈ K there exist q(t) ∈ R and b ∈ K such that

f(t) = q(t)(t− a) + b , we then define f(a) := b

See [LL1], [LL2] or Wed1 for details. A subset ∆ ⊆ K is algebraic if there exists
a polynomial g ∈ R such that g(x) = 0 for all x ∈ ∆. For f ∈ R we put V (f) :=
{a ∈ K|f(a) = 0}. This set is obviously algebraic and we say that a polynomial
f ∈ R is a Wedderburn polynomial if f is monic and is of minimal degree among
polynomials annihilating V (f). An element a ∈ K is P -dependent over an algebraic
subset ∆ if any polynomial annihilating ∆ also annihilates a.

A subset B of an algebraic set ∆ is called a P -basis for ∆ if no element b ∈ B
is P -dependent over B \ {b} and all elements of ∆ are P -dependent over B. All
the P -bases of ∆ have the same cardinal called the rank of the algebraic set ∆ and
denoted by rk ∆.

An element b ∈ K is (S, D)-conjugate to an element a ∈ K if there exists
c ∈ K \ {0} such that b = S(c)ac−1 + D(c)c−1, in this case we write b := ac and
the set {ax|x ∈ K \ {0}} will be denoted ∆S,D(a) (or just ∆(a) when no confusion
is possible) and called the (S, D)-conjugacy class of a.

For a ∈ K, we define the (S,D)-centralizer of a, denoted by CS,D(a), to be the
set CS,D(a) := {x ∈ K \ {0} | ax = a} ∪ {0}. This is a division subring of K.

Of course, similar notions exist for the case of a (Id, σ)-derivation δ. For in-
stance an element b ∈ K is (δ, σ)-conjugate to an element a ∈ K if there exists
c ∈ K \ {0} such that b = caσ(c−1) + cδ(c−1). The set of elements (δ, σ)-conjugate
to an element a will be denoted ∆δ,σ(a). It is an easy exercise to remark that, when
σ is an automorphism of K, we have ∆S,D(a) = ∆−DS−1,S−1

(a) (Cf. 6.1).
For h ∈ R and x ∈ K \ V (h) we define φh(x) := xh(x). This map appears

naturally while evaluating a product gh at an element x ∈ K \ V (h):

(2.1) gh(x) = g(φh(x))h(x).

Let us recall that φh(∆(a)) ⊆ ∆(a) i.e. φh preserves the (S, D)-conjugacy
classes. While computing φh within a single (S,D)-conjugacy class ∆(a), another
map appears naturally: for x ∈ K \ 0, φh(ax) = ah(ax)x. We thus define a map
λh,a : K −→ K by setting:
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λh,a(x) =

{
h(ax)x if x 6= 0,

0 if x = 0.

The map λh,a is a right C := CS,D(a)-linear and kerλh,a = {x ∈ K \ {0} | ax ∈
V (h)}∪{0}. If an algebraic set Γ is contained in a conjugacy class ∆(a), say Γ = aY

for some Y ⊆ K \ {0}, then V (fΓ) = aY C , where Y C is the right C = CS,D(a)-
vector space generated by Y . Moreover one has rk Γ = deg fΓ = dimC Y C (Cf.
[LL2]). We also have rk (V (h) ∩ ∆(a)) = dimC kerλh,a (Cf. Wed1). Let us also
remark that, for f, g ∈ R, we have λfg,a = λf,aλg,a.

3. Rank theorems

In this section we will present various relations involving the rank of an algebraic
set. Our first objective is to relate the rank of V (gh) and the ranks of V (g) and
V (h). Let us first recall the following result from Wed1 (Cf. [LL5, Corollary 4.4]).

Lemma 3.1. If ∆i (1 ≤ i ≤ r) are algebraic sets located in different (S,D)-
conjugacy classes ∆S,D(ai) of K, then:

(1) The set Ei := {x ∈ K \ {0} | ax
i ∈ ∆i} ∪ {0} is a right vector space over

Ci := CS,D(ai).
(2) rk

(⋃r
i=1 ∆i

)
=

∑r
i=1 rk∆i =

∑r
i=1 dimCi Ei.

Of course, this lemma applies to the set V (f) := {x ∈ K | f ∈ R(t − x)}
of right roots of a polynomial f ∈ R. For f ∈ R = K[t; S,D] and a ∈ K, we
also introduce the following notations: V ′(f) := {x ∈ K | f ∈ (t − x)R} and
E(f, a) = {x ∈ K \ {0} | ax ∈ V (f)} ∪ {0}. E(f, a) is a right CS,D(a)-vector space.

Corollary 3.2. Let f ∈ R = K[t;S, D] be a monic polynomial of degree n.
With the above notations one has:

(1) V (f) intersects at most n = deg(f) (S,D)-conjugacy classes, say V (f) =⋃r
i=1(V (f) ∩∆(ai)), with r ≤ n.

(2) rk V (f) =
∑r

i=1 dimCi E(f, ai) ≤ deg(f), where Ci = CS,D(ai). The
equality holds if and only if f is a Wedderburn polynomial.

(3) V ′(f) ∪ V (f) intersects at most n = deg(f) (S, D)-conjugacy classes.

Proof. (1). Let us recall that any polynomial f ∈ R = K[t; S, D] can be
factorized as a product of irreducible polynomials: f = p1 · · · pl. Moreover if f =
q1 · · · qs is another such factorization then l = s and there exists a permutation
π ∈ Sl such R/Rpi

∼= R/Rqπ(i) (this means that R is a UFD, Cf. [Co2]). On the
other hand, it is well known and easy to check that R/R(t − a) ∼= R/R(t − b) if
and only if ∆(a) = ∆(b) (Cf. Theorem 4.9 for a further generalization). It is then
clear that the number of conjugacy classes containing right roots of f is bounded
by deg(f).

Alternatively one can apply Lemma 3.1 to the algebraic set V (f) to prove this
result. This is left to the reader.
(2). Decomposing V (f) into the (S, D)-conjugacy classes it intersects, we can write
V (f) =

⋃r
i=1 ∆i where ∆i = V (f) ∩∆(ai) and E(f, ai) = {x ∈ K \ {0} | f(ax

i ) =
0}∪{0}. The above Lemma 3.1 then yields the desired formulas and the additional
statement comes from the fact that f is a Wedderburn polynomial if and only if
rk (V (f)) = deg(f).
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(3). As in (1) above, this is again a direct consequence of the fact that R =
K[t; S, D] is a UFD. ¤

Notice the following important special case: E(f, 0) is easily seen to be the
solution space of the differential equation f(D) = 0 and CS,D(0) = KD is the
constant subdivision ring of K. Amitsur’s well-known theorem states that the
dimension over KD of the solution space of the equation f(D) = 0 is bounded by
the degree of the polynomial f (Cf. [Am]). This is now clear: this dimension is
one of the dimensions appearing in the expression of rk V (f).

Lemma 3.3. Let V be a right vector space over a division ring C and φ, ψ ∈
EndCV . If v1, v2, . . . , vr is a basis for kerψ and u1, u2, . . . , us ∈ V \ kerψ then the
following are equivalent:

i) The set {v1, . . . , vr, u1, . . . , us} is a basis for kerφψ.
ii) The set {ψ(u1), ψ(u2), . . . , ψ(us)} is a basis for Im ψ ∩ kerφ.

In particular, we have

dimC ker(φψ) = dimC kerψ + dimC(Im ψ ∩ kerφ).

Proof. The easy proof is left to the reader. ¤

Theorem 3.4. Let g, h be polynomials from R, then

rkV (gh) = rk V (h) + rk (Im φh ∩ V (g)).

In particular, we always have

rk V (gh) ≤ rk V (h) + rk V (g).

Proof. Let us put f = gh and remark that, thanks to Lemma 3.1, it is enough
to prove that, for any a ∈ K, we have rk (V (gh) ∩ ∆(a)) = rk (V (h) ∩ ∆(a)) +
rk (Im φh ∩ V (g) ∩ ∆(a)). Using the definitions and results recalled at the end of
Section 2, we get, for a in K, λf,a = λg,aλh,a. In particular, kerλh,a ⊆ kerλf,a.
Moreover, if C stands for CS,D(a), we have rk (V (f) ∩ ∆(a)) = dimC kerλf,a ;
rk (V (h) ∩ ∆(a)) = dimC kerλh,a ; Im φh ∩ ∆(a) = aIm λh,a\{0} and rk (V (g) ∩
Imφh ∩∆(a)) = dimC(Im λh,a ∩ kerλg,a). So we finally must prove that

dimC kerλf,a = dimC kerλh,a + dimC(Im λh,a ∩ kerλg,a).

But this is exactly what is given by Lemma 3.3. ¤

As an application of the above result let us give another proof of the main
part of the ”factor theorem” [LL5], Theorem 5.1. Recall that a polynomial f is
Wedderburn if and only if it is monic and rkV (f) = deg f (Cf. Wed1).

Corollary 3.5. If g, h are monic polynomials in R such that gh is a Wedder-
burn polynomial then g and h are Wedderburn.

Proof. The above theorem implies that rk V (g) + rk V (h) ≥ rk V (gh) =
deg gh = deg g + deg h. This implies rk V (g) = deg g and rk V (h) = deg h. ¤

Recall from Wed1, that if ∆ ⊆ K is an algebraic set, we denote by f∆ the monic
polynomial of minimal degree annihilating ∆, and we put ∆ = {x ∈ K| f∆(x) = 0}.
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Theorem 3.6. Let h ∈ R and ∆ ⊆ K be an algebraic set disjoint from V (h).
Then:

(1) φh(∆) is an algebraic set.
(2) [f∆, h]l = fφh(∆)h, where [f∆, h]l denotes the monic least left common

multiple of f∆ and h.
(3) rk φh(∆) = rk ∆ − rk (∆ ∩ V (h)). In particular, rk φh(∆) = rk∆ iff ∆ ∩

V (h) = ∅.
(4) deg((f∆, h)r) = rk (∆ ∩ V (h)), where (f∆, h)r denotes the monic right

greatest common divisor of h and f∆.

Proof. (1) and (2) Let us write [f∆, h]l for the monic least left common mul-
tiple of f∆ and h. Let g, g′ ∈ R be such that [f∆, h]l = gh = g′f∆. Then for
x ∈ ∆, we have 0 = (g′f∆)(x) = (gh)(x) = g(φh(x))h(x). Hence, since h(x) 6= 0,
g(φh(x)) = 0. This shows that φh(∆) is algebraic and fφh(∆) divides g on the right.
Hence fφh(∆)h divides [f∆, h]l on the right. On the other hand fφh(∆)h annihilates
∆ and is thus right divisible by both f∆ and h. This proves (2).
(3) Decomposing the algebraic sets ∆, φh(∆) and ∆ ∩ V (h) in conjugacy classes
and using the above Lemma 3.1 we see that it is enough to show that, for any
a ∈ K, rk (φh(∆) ∩ ∆(a)) = rk (∆ ∩ ∆(a)) − rk (∆ ∩ V (h) ∩ ∆(a)). Let us put
Y := {y ∈ K \{0}|ay ∈ ∆∩∆(a)} and denote by YC the right C := CS,D(a)-space
generated by Y . We have rk (∆ ∩ ∆(a)) = rk ({ay|y ∈ Y }) = dimC Y C, rk (∆ ∩
V (h) ∩ ∆(a)) = rk ({ay|y ∈ Y C and h(ay) = 0}) = dimC(Y C ∩ kerλh,a) and
rk (φh(∆) ∩∆(a)) = dimC λh,a(Y C). The required equality is an easily seen to be
an immediate consequence of the relation between the dimension of the kernel of
λh,a and the dimension of its image.
(4) As is well known, one has deg(f∆) + deg(h) = deg([f∆, h]l) + deg((f∆, h)r).
Using statement (2) above we get deg(f∆) = deg(fφh(∆)) + deg((f∆, h)r). In other
words rk (∆) = rk (φh(∆)) + deg((f∆, h)r). Formula (3) then yields the result. ¤

Example 3.7. Let K be a division ring (we assume that S = Id, D = 0) and
a, x ∈ K, x /∈ {0,−1}, be such that {a, ax, a1+x} are distinct elements. Consider
the polynomial h(t) = t − a1+x ∈ K[t] and ∆ = {a, ax}. It is easy to check that
V (h)∩∆ = ∅, V (h)∩∆ = {a1+x}. Notice also that h(ax)x = axx−(1+x)a+a1+x =
−a + a1+x = −h(a) and thus φh(ax) = ah(ax)x = ah(a) = φh(a). This gives
φh(∆) = {aa−a1+x}. Of course, formula (3) of the previous Theorem 3.6 can be
checked on this particular example. This also shows that it is necessary to take
V (h) ∩∆ and not merely V (h) ∩∆ in this formula.

Let us recall that a subset {a1, . . . , an} of an algebraic set ∆ is a P -basis for
∆ if the monic polynomial f such that Rf =

⋂n
i=1 R(t − ai) is of degree n and

annihilates ∆. As a corollary let us mention the following interesting fact:

Corollary 3.8. For h ∈ R, let {a1, . . . , an} be a P -basis for V (h) and
{b1, . . . , bs} ⊂ K \ V (h). Then the set {a1, . . . , an, b1, . . . , bs} is P -independent
if and only if {φh(b1), . . . , φh(bs)} is P -independent.

Proof. Let us put Γ := {a1, . . . , an} and ∆ := {b1, . . . , bs}. Γ ∪ ∆ is P -
independent if and only if deg([f∆, fΓ]l) = n + s. Since deg fΓ = n and deg f∆ ≤ s,
we get that Γ ∪ ∆ is P -independent if and only if deg((f∆, h)r) = 0 and ∆ is
P -independent. Since the irreducible factors of f∆ and fΓ are all linear one can
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conclude that Γ∪∆ is P -independent if and only if V (f∆)∩V (fΓ) = ∅ and ∆ is P -
independent. In other words ∆∪Γ is independent if and only if ∆∩V (h) = ∅ and ∆
is P -independent. Statement (3) of the theorem shows that these last two conditions
are equivalent to rk (φh(∆)) = rk (∆) = s. Since one always has rk (φh(∆)) ≤
rk (∆) the last statement is equivalent to rk (φh(∆)) = s, as desired. ¤

4. Companion matrices

In this section we will show that the companion matrices together with pseudo
linear transformations give a natural interpretation of some notions related to R =
K[t; S, D]-modules.

Definition 4.1. Two polynomials g, h ∈ R = K[t; S, D] are similar if R/Rg ∼=
R/Rh as left R-modules. This will be denoted by f ∼ g. ∆(f) will stand for the
set of polynomials similar to f .

Remarks 4.2. a) The notion of similarity can be introduced over a general
ring. It is obviously an equivalence relation and in the case of an integral domain
we always have R/Rg ∼= R/Rf if and only if R/gR ∼= R/fR (Cf. [LO], [Co2]).

b) Let a, b ∈ K, then t− a ∼ t− b if and only if a and b are (S,D)-conjugate.
Theorem 4.9 will generalize this example and give a description of similarity of
polynomials in terms of (S,D)-conjugation.

Lemma 4.3. Let f, g, h ∈ R = K[t; S, D] be monic polynomials. Then:
(1) There exist uniquely determined monic polynomials g′, h′ ∈ R such that

Rg ∩ Rh = Rg′h = Rh′g. We will denote g′ and h′ by gh and hg respec-
tively.

(2)
R

Rhg
∼= Rg + Rh

Rh
In particular, if Rg + Rh = R we have hg ∼ h and hence deg hg = deg h.

(3)

Rfg ∩Rh =

{
Rfg if g ∈ Rh,

(Rf ∩Rhg)g if g /∈ Rh.

Proof. (1) This is clear.
(2) This is given by a classical isomorphism theorem. Notice also that the map

R/Rhg −→ R/Rh : x 7→ xg is easily seen to be well defined and injective. Moreover
it is onto when Rg + Rh = R.

(3) This is easy to check and is left to the reader. ¤

Remark 4.4. Let us first notice that if g = t − a and h = t − b, a 6= b, we
have gh = t − aa−b, where, as usual, ac = S(c)ac−1 + D(c)c−1 for c ∈ K \ {0}.
More generally, when h = t − a we have Rg ∩ R(t − a) = Rg if g(a) = 0 and
Rg ∩ R(t − a) = R(t − ag(a))g if g(a) 6= 0. Remark also that, when h = t − a,
the formula in 4.3(3) above gives back the way of evaluating the product fg at the
element a ∈ K.

We collect without proofs some easy facts related to similarity.

Lemma 4.5. For monic polynomials f, g, h ∈ R, we have:
(1) deg fg ≤ deg f .
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(2) If g − h ∈ Rf , then fg ∼ fh.
(3) ∆(f) = {fq | q ∈ R, Rq + Rf = R and deg q < deg f}.
(4) gh ∈ Rf if and only if either h ∈ Rf or g ∈ Rfr where r is the remainder

of h right divided by f .
(5) (fg)h = fhg.

Proof. We leave the proofs of these statements to the reader (Cf. [LO] for
similar facts in the more general frame of 2-firs). ¤

For a monic polynomial f(t) =
∑n

i=0 ait
i ∈ R = K[t;S,D], the companion

matrix of f(t), denoted by Cf , is the n× n matrix defined by

Cf =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1




.

We need also some results on pseudo-linear transformations (abbreviated by PLT
or (S, D)-PLT in the sequel). For details on this topic we refer the reader to [L].
Let us recall that for a left K-vector space V , a map T : V −→ V is an (S, D)-
PLT if T is additive and T (αv) = S(α)T (v) + D(α)v for α ∈ K and v ∈ V .
If dimKV = n < ∞ and β = {e1, . . . , en} is a K-basis for V , we associate to
T a matrix in the usual way: Mβ(T ) = (aij) where T (ei) =

∑n
j=1 aijej . On

the other hand if A is a matrix in Mn(K) and if Kn stands for the set of row
vectors with coefficients in K. One can define the map TA : Kn −→ Kn given
by TA(v) = S(v)A + D(v), where the maps S and D have been extended to Kn

in an obvious way. TA is an (S,D)-PLT which defines a left R = K[t; S,D]-
module structure on Kn via (

∑n
i=0 αit

i).v =
∑n

i=0 αi(TA)i(v) for v ∈ Kn and∑
αit

i ∈ K[t; S, D]. Conversely any structure of left R-module defined on Kn is
of this form. Let us denote ei := (0, . . . , 0, 1, 0 . . . 0) the element of Kn with a 1
in position i and zero elsewhere. For a monic polynomial f ∈ R of degree n, the
K-linear map R/Rf −→ Kn defined by ti 7→ ei+1, for i = 0, 1, . . . , n − 1 induces
an R-module structure on Kn that corresponds to TCf

where Cf is the companion
matrix defined above. The matrix representing a PLT depends on the K-basis of
Kn which is chosen. If two matrices A and B represent the same PLT in different
bases, there exists an invertible matrix P ∈ GLn(K) such that

B := S(P )AP−1 + D(P )P−1.

This leads to the following definitions.

Definitions 4.6. (1) A,B ∈ Mn(K) are (S,D)-similar if there exists an in-
vertible matrix P ∈ GLn(K) such that B = S(P )AP−1 + D(P )P−1.
(2) A matrix A is (S,D)-diagonalizable (resp. triangularizable) if it is (S,D)-
similar to a diagonal (resp. triangular) matrix.

Throughout the next two sections and independently of the size of the matrix
involved, we will denote by U a matrix having zeros everywhere but a 1 in the
bottom left corner. When different such matrices appear in the same statement
we will just use the notation U1, . . . , Un for the various instances of this type of
matrices.
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Lemma 4.7. Let f ∈ R = K[t;S, D] be a monic polynomial. Then:
(1) All submodules of R/Rf are of the form Rg/Rf , where g is a monic right

factor of f .
(2) If there exist a1, . . . , an ∈ K such that f(t) = (t−an)(t−an−1) · · · (t−a1),

then the companion matrix Cf is (S, D)-similar to the following one:



a1 1 0 . . . 0
0 a2 1 . . . 0
...

. . . . . .
...

0 an−1 1
0 0 an




(3) If f = gh where g, h ∈ R are monic then the companion matrix Cf is
(S, D)-similar to the following matrix

(
Ch U
0 Cg

)

Where the rectangular matrices are of the required sizes.

Proof. (1) This is clear since R is a left principal domain.
(2) Notice first that the set {1 + Rf, t− a1 + Rf, (t− a2)(t− a1) + Rf, . . . , (t−

an−1)(t−an−2) · · · (t−a1)+Rf} ⊆ R/Rf is a K-basis of R/Rf . In this K-basis the
matrix associated to left multiplication by t on R/Rf is exactly the one displayed
in the statement (2). This shows that Cf is (S, D)-similar to this matrix.

(3) Put l = deg g and n = deg h. It is enough to consider the following K basis
of R/Rf :

1 + Rf, t + Rf, . . . , tn−1 + Rf, h + Rf, th + Rf, . . . , tl−1h + Rf.
It is easy to check that in this basis the matrix representing left multiplication

by t is exactly the one mentioned in the statement of the lemma. This shows that
this matrix is (S, D)-similar to Cf . ¤

Let us remark that the second statement in the above Lemma 4.7 could also
be obtained by using the third one repeatedly.

The following easy lemma will be very useful allowing us to translate R =
K[t; S, D]-module theoretic notions into matrix related ones. It will be used again
in the next section.

Lemma 4.8. Let RV and RW be left R-modules which are finite dimensional
as left K-vector spaces with bases B and C respectively. Let ϕ : V −→ W be a left
K-linear map and denote

P := MB
C (ϕ) A := MB

B (t·) and B := MC
C (t·) .

Then ϕ is a morphism of left R-modules if and only if AP = S(P )B + D(P ).

Proof. For a vector v ∈ V we denote vB the row in Kn consisting of the
coordinates of v in the basis B. We use similar notations in W . The definition of
MB
B (t·) gives: (t · v)B = S(vB)A + D(vB) and so ϕ(t · v)C = S(vB)AP + D(vB)P .

On the other hand, (t · ϕ(v))C = S(ϕ(v)C)B + D(ϕ(v)C) = S(vBP )B + D(vBP ) =
S(vB)(S(P )B + D(P )) + D(vB)P . Since ϕ is a morphism of left R-modules if and
only if ϕ ◦ t· = t · ◦ϕ, we obtain the required equality. ¤

As a first consequence we get the following:
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Theorem 4.9. Two monic polynomials f, g ∈ R are similar if and only if their
companion matrices Cf and Cg are (S, D)-conjugate.

Proof. Let B := {1+Rf, t+Rf, . . . , tn−1 +Rf}, where n = deg f , be a basis
for the left K-vector space R/Rf . Then Cf represents the (S, D)-pseudo linear
transformation t· acting on R/Rf i.e. Cf = MB

B (t·). Similarly Cg represents t·
in the appropriate basis C of R/Rg. Since f ∼ g if and only if there exists an

isomorphism R/Rf
ϕ∼= R/Rg of left R-modules. Hence the matrix P := MB

C (ϕ) is
invertible and the above Lemma 4.8 shows that f ∼ g if and only if Cf and Cg are
(S,D)-conjugate. ¤

Proposition 4.10. Let g, h ∈ R = K[t; S, D] be two monic polynomials of
degree l and n respectively. Put

A :=
(

Ch U
0 Cg

)
and B :=

(
Ch 0
0 Cg

)

where Cg, Ch denote the companion matrices of g and h respectively and U is our
standard notation for the unit matrix en1 ∈ Mn×l(K). Then the following are
equivalent:

(1) 0 −→ R/Rg
·h−→R/Rgh −→ R/Rh −→ 0 splits.

(2) 1 ∈ Rg + hR.
(3) There exists a matrix X ∈ Mn×l(K) such that

(
I S(X)
0 I

)
A +

(
0 D(X)
0 0

)
= B

(
I X
0 I

)

(4) There exists a matrix X ∈ Mn×l(K) such that ChX −S(X)Cg −D(X) =
U .

Proof. (1) ⇒ (2) By hypothesis there exists a map ϕ : R/Rgh −→ R/Rg
such that ϕ ◦ ·h = IdR/Rg. Let y ∈ R be such that ϕ(1 + Rgh) = y + Rg. We then
have (ϕ ◦ ·h)(1+Rg) = 1+Rg, i.e. hy− 1 ∈ Rg. This gives that there exists x ∈ R
such that hy + xg = 1.

(2) ⇒ (3) By hypothesis there exist x, y ∈ R such that 1 = xg + hy. using
the right euclidian division, we may assume that deg(y) < deg(g). Define ϕ :
R/Rgh −→ R/Rh ⊕ R/Rg : u + Rgh 7→ (u + Rh, uy + Rg). It is easy to check
that this map is a well defined morphism of left R-modules. Let B = {1 + Rgh, t +
Rgh, . . . , tn−1+Rgh, h+Rgh, th+Rgh, . . . , tl−1h+Rgh} and C := {(1+Rh, 0), (t+
Rh, 0), . . . , (tn−1 + Rh, 0), (0, 1 + Rg), . . . , (0, tl−1 + Rg)} be bases for the left K-
vector spaces R/Rgh and R/Rh

⊕
R/Rg, respectively. Since hy + Rg = 1 + Rg, it

is easy to check that the matrix of ϕ in these bases is of the form

P := MB
C (ϕ) =

(
I Y
0 I

)

(where Y is the n×l matrix whose rows are given by writing tiy+Rg, i = 1, . . . , n−1,
in the basis tj + Rg, j ∈ {0, . . . , l − 1}). Remark that we also have A = MB

B (t·)
and B = MC

C (t·). Since ϕ is a morphism of left R-modules, Lemma 4.8 implies that
AP = S(P )B + D(P ) i.e. S(P−1)A + D(P−1) = BP−1. We then get the desired
conclusion with X := −Y .

(3) ⇒ (1) Let B and C be the bases for the K-vector spaces R/Rgh and
R/Rh

⊕
R/Rg defined in the proof of (2) ⇒ (3). Let ϕ : R/Rgh −→ R/Rh

⊕
R/Rg
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be the left K-isomorphism map such that

P := MB
C (ϕ) =

(
I −X
0 I

)

We have A = MB
B (t·) and B = MC

C (t·). Statement (3) implies that S(P−1)A +
D(P−1) = BP−1 i.e. AP = S(P )B + D(P ). Lemma 4.8 shows that ϕ is an
homomorphism of left R-modules. Let p denotes the projection R/Rh

⊕
R/Rg −→

R/Rg. We claim that p ◦ ϕ : R/Rgh −→ R/Rg is a splitting of ·h. Indeed
(p ◦ ϕ ◦ .h)(1 + Rg) = p(ϕ(h + Rgh)) = p((0, 1 + Rg)) = 1 + Rg.

(3) ⇔ (4) This is left to the reader. ¤

5. diagonalization and triangularization

In this section we will briefly consider a generalization of Wedderburn polyno-
mials which will be called fully reducible polynomials. The family of fully reducible
polynomials is larger than the Wedderburn one, but they share many properties
and, for what we have in mind, the fully reducible polynomials are not more dif-
ficult to handle. They will show better the connection between factorization in R
and companion matrices. They were introduced by Ore himself and further studied
by P.M. Cohn in the setting of 2-firs ([Co2]) and more recently by the second and
third authors of this paper (again in the setting of 2-firs, Cf. [LO]). The companion
matrices of these families of polynomials will lead us naturally to a characterization
of diagonalizability of a matrix over a division ring.

Definition 5.1. A monic polynomial f ∈ R = K[t;S,D] is fully reducible if
there exist irreducible polynomials p1, . . . , pn such that Rf =

⋂n
i=1 Rpi.

Wedderburn polynomials and monic irreducible polynomials are fully reducible.
Notice also that a polynomial g(t) = (t − a1) · · · (t − an) is fully reducible if and
only if it is Wedderburn.

The notion of fully reducible polynomials is symmetric i.e. if f ∈ R = K[t; S,D]
is a monic polynomial and p1, p2, . . . , pn are irreducible polynomials such that
Rf =

⋂n
i=1 Rpi then there exist irreducible polynomials q1, . . . , qn such that fR =⋂n

i=1 qiR. Moreover there exists a permutation π ∈ Sn such that pi ∼ qπ(i) i.e.
R/Rpi

∼= R/Rqπ(i) (Cf. [LL4] or [LO]).

Theorem 5.2. Let f ∈ R be a monic polynomial of degree l. Then the following
are equivalent:

(1) f is fully reducible.
(2) There exist monic irreducible polynomials p1, . . . , pn such that Rf =

⋂n
i=1 Rpi

is an irredundant intersection.
(3) There exist monic irreducible polynomials p1, . . . , pn ∈ R such that the

map ϕ : R/Rf −→ ⊕n
i=1 R/Rpi given by ϕ(q + Rf) = (q + Rp1, . . . , q +

Rpn) is an isomorphism of R-modules.
(4) There exist monic irreducible polynomials p1, . . . , pn ∈ R and an invertible

matrix V ∈ Ml(K) such that

CfV = S(V )diag (Cp1
, . . . , Cpn) + D(V ).

(5) R/Rf is semisimple.
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Proof. (1) ⇔ (2) is clear by definition.
(2) ⇒ (3). The map ϕ is easily seen to be well defined and injective. Since,

for every j ∈ {1, . . . , n}, Rpj + (
⋂

i 6=j Rpi) = R, Lemma 4.3 and an easy induc-
tion on n show that deg f =

∑n
i=1 deg pi. This implies that the dimK(R/Rf) =

dimK(
⊕

i R/Rpi) and we conclude that ϕ is onto.
(3) =⇒ (2). Composing ϕ with the natural homomorphism R

p−→R/Rf we
obtain an onto R-morphism: ψ = ϕ ◦ p such that kerψ = Rf and we conclude
that Rf =

⋂n
i=1 Rpi. The fact the this intersection is irredundant is clear from the

equalities: l = deg(f) = dimK(R/Rf) =
∑

i dimK(R/Rpi) =
∑

i deg(pi).
(3) ⇒ (4). Let B = {ti + Rf | i = 0, . . . , l − 1} be a basis for the left K space

R/Rf and C = {(0, . . . , 0, tj + Rpi, 0, . . . , 0) | i = 1, . . . , n and j = 0, . . . , ni − 1},
where ni = deg pi, be a K-basis for ⊕iR/Rpi. We have MB

B (t·) = Cf and MC
C (t·) =

diag (Cp1 , . . . , Cpn
). Put V := MB

C (ϕ). Then V is invertible and since ϕ is a
morphism of left R-modules, Lemma 4.8 yields the required equality.

(4) ⇒ (5). It is enough to define the K-linear map ϕ : R/Rf −→ ⊕n
i=1R/Rpi

such that V = MB
C (ϕ) where B and C are the bases defined in the proof of the

implication (3) ⇒ (4). Since V is invertible, this map is bijective. Statement (4)
and Lemma 4.8 imply that ϕ an isomorphism of left R-modules. The simplicity of
the left R-modules R/Rp1, . . . , R/Rpn implies that R/Rf is semi-simple.

(5) ⇒ (3). This is clear and left to the reader. ¤

In ([LL5]) (resp. [LO]) several criterion were given for a product of Wed-
derburn polynomials (resp. fully reducible polynomials) to be again a Wedderburn
polynomial (resp. fully reducible). We will give two more criterions in the following
theorem. We treat the cases of Wedderburn polynomials and fully reducible poly-
nomials simultaneously. Let us first introduce some technical notations. Let g be
a monic polynomial of degree l and suppose g admits a factorization g = pr · · · p1,
where p1, . . . , pr are monic polynomials of degree l1, . . . , lr respectively. We put:

Cg(pr, . . . , p1) =




Cp1 U1 0 · · ·
0

. . . . . . 0
0 · · · Cpr−1 Ur−1

0 0 0 Cpr


 ,

where for i = 1, . . . , r − 1, the matrices Ui ∈ Mni×ni+1(K) have a 1 in the bottom
left corner and zero elsewhere. In particular, if g(t) = (t− ar) · · · (t− a1) the above
matrix takes a simpler form:

Cg(ar, . . . , a1) =




a1 1 0 · · ·
0

. . . . . . 0
0 · · · ar−1 1
0 0 0 ar


 .

Lemma 5.3. With the above notation, the companion matrix of g is (S,D)-
similar to Cg(pr, . . . , p1). More precisely, there exists an invertible lower triangular
matrix Q ∈ Ml×l(K) with 1’s on the diagonal such that:

CQ
g = Cg(pr, . . . , p1).

Where, as usual, CgQ = S(Q)CgQ
−1 + D(Q)Q−1.
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Proof. Let us put deg(pi) = li, i = 1, . . . , r. Similarly as in the proof of
Lemma 4.7, consider the bases B and C of the K-vector space R/Rg defined as
follows: B := {1+Rg, t+Rg, . . . , tl1−1+Rg, p1+Rg, tp1+Rg, . . . , tl2−1p1+Rg, p2p1+
Rg, tp2p1 + Rg, . . . , tl−1pr−1 · · · p1 + Rg} and C := {1 + Rg, t + Rg, . . . , tl−1 + Rg}.
We have MB

B (t·) = Cg(pr, . . . , p1), MC
C (t·) = Cg and it is easy to check that the

matrix Q := MB
C (Id) representing the identity map on R/Rg in the bases B and

C is lower triangular with ones on the diagonal. Since the identity is an R-module
map, Lemma 4.8 gives the desired result. ¤

Theorem 5.4. Let g, h be fully reducible polynomials (resp. W -polynomials)
from R of degree l and n respectively. Then the following are equivalent:

(1) gh is a fully reducible (resp. W -) polynomial.
(2) 1 ∈ Rg + hR.
(3) There exists a matrix X ∈ Mn×l(K) such that

ChX − S(X)Cg −D(X) = U,

where U = en1 ∈ Mn×l(K).
(4) Let g = pr · · · p1 and h = qs · · · q1 (resp. p1 = (t− bl), · · · , pl = t− bl and

q1 = (t−a1), · · · , qs = t−as)). Then there exists Y ∈ Mn×l(K) such that

Ch(qs, . . . , q1)Y − S(Y )Cg(pr, . . . , p1)−D(Y ) = U.

(resp.

Ch(an, . . . , a1)Y − S(Y )Cg(bl, . . . , b1)−D(Y ) = U.)

Proof. (1)⇔(2) This comes from the fact that a monic polynomial f ∈ R is
fully reducible if and only if the left R-module R/Rf is semi simple. In particular,
by hypothesis, R/Rg and R/Rh are semi simple modules. With these remarks,
Equivalence (1) ⇔ (2) in Proposition 4.10 easily yields the result.

(2)⇔(3) This is exactly the equivalence (2)⇔(4) in Proposition 4.10.
(3)⇔(4) The above Lemma 5.3 shows that there exist lower triangular ma-

trices P,Q with 1′s on their diagonals such that CP
h = Ch(qs, . . . , q1) and CQ

g =
Cg(pr, . . . , p1). From (3) we have CP

h PX−D(PX)−S(PX)Cg = S(P )U . Putting
Z = PX we get Ch(qs, . . . , q1)Z − D(Z) − S(Z)Cg = S(P )U . Multiplying by
Q−1 on the right we obtain Ch(qs, . . . , q1)ZQ−1 − (D(Z)Q−1 + S(Z)D(Q−1)) −
S(ZQ−1)CQ

g = S(P )UQ−1. Defining Y := ZQ−1 we finally get that Ch(qs, . . . , q1)Z−
D(Z)− S(Z)Cg(pr, . . . , p1) = S(P )UQ−1 = U , where the last equality comes from
the definition of U = en1 and the fact that the matrices P and Q are lower triangular
matrices with ones on the diagonal. ¤

In our previous work Wed1 ([LL5]) we have obtained a few conditions for
a product of two W -polynomials to be a W -polynomial. Let us point out that
the advantage of the characterization (3) in the above theorem is that there is a
finite number of equations to check and that they are directly available from the
coefficients of g and h themselves. The characterization (4) is also interesting if one
knows in advance a factorization of f and g.

Example 5.5. Let K = Q(x) be the field of rational fractions in x over the
rationals and let R be the Ore extension R = Q(x)[t; Id, d

dx ]. Using the above
theorem it is easy to show that, for any q ∈ Q(x) and for any n ∈ N, the polynomials
(t−q)n ∈ R are W -polynomials. To check this, let us write (t−q)n = (t−q)n−1(t−q)
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and U = (1, 0, . . . , 0) ∈ M1×n−1(Q(x)). Part (4) of the theorem, with g = (t−q)n−1

and h = t− q, shows that we have to find (y1, . . . , yn−1) ∈ Q(x)n−1 such that:




y1q + D(y1)− qy1 + 1 = 0
y1 + y2q + D(y2)− qy2 = 0
y2 + y3q + D(y3)− qy3 = 0
...
yn−2 + yn−1q + D(yn−1)− qyn−1 = 0

It is then easy to see that the sequence defined by yi = (−1)i xi

i! (i = 1, . . . , n − 1)
gives a solution of the above system of equations. We can thus conclude that, for
any n ∈ N, the polynomial (t− q)n ∈ R is a W -polynomial.

Example 5.6. Let k be a commutative field of characteristic 0, D a derivation
(S = Id) on k. Kolchin (Cf. [Ko]) showed that there exists a field L containing k
as a subfield and a derivation D over L extending D such that the equation

p(x,D(x), . . . , D
(n)

(x)) = 0, n arbitrary,

has a solution u ∈ L for all p(X) ∈ U [X1, . . . , Xn+1] \ L. Applying this property
to the polynomial X2 − v, for v ∈ L, we conclude that D is onto. We claim that
all monic polynomials of R = L[t; D] are W-polynomials. Let us first show the the
irreducible polynomials are of degree at most 1. Indeed, if p(t) =

∑
ait

i ∈ R is
such that deg(p(t)) > 1, it is easy to verify that the hypothesis made on L implies
that there exists v ∈ L such that p(v) =

∑
aiNi(v) = 0 i.e. t − v divides p(t) on

the right. It follows that any monic polynomial h(t) of degree n can be factorized
in the form h(t) = (t − an) . . . (t − a1). By induction on the degree we need only
show that if h(t) is a W-polynomial, than (t− b)h(t) is also a W-polynomial. Once
again using the above Theorem 5.4(4), we must find (y1, . . . , yn) ∈ Ln such that:




a1 1 0 · · ·
0

. . . . . . 0
0 · · · an−1 1
0 0 0 an







y1

y2

...
yn


−




y1

y2

...
yn


 b−




D(y1)
D(y2)

...
D(yn)


 =




0
0
...
1


 .

In other words we have to solve (for yi’s) the equations

aiyi − yib−D(yi) = ui for 1 ≤ i ≤ n ,

where ui = −yi+1 for 1 ≤ i ≤ n− 1 and un = 1. But solving first for yn and then
for yn−1,... it is easy to check that these equations all have solutions thanks to the
property of L.

We now come to the diagonalization. As is well known, a matrix A ∈ Mn(k)
over a commutative field k is diagonalizable if and only if its minimal polynomial
can be written as a product of distinct linear polynomials in k[t]. In other words
the minimal polynomial of A must be a W-polynomial. In the next section we will
generalize this result and obtain a criterion for the diagonalizability of a matrix
with coefficients in a division ring. This will be developed in an ”(S, D)” setting.

Let us recall some results and notations from [LL1]. For {b1, . . . , bn} ⊂ K we
define the Vandermonde matrix:
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Vn(b1, . . . , bn) =




1 1 · · · 1
b1 b2 · · · bn

N2(b1) N2(b2) · · · N2(bn)
...

...
...

...
Nn−1(b1) Nn−1(b2) · · · Nn−1(bn)




where, for a ∈ K and i ≥ 0, Ni(a) denotes the evaluation of ti at a. Notice
that one has N0(a) = 1 and, using the product formula recalled in (2.1), one gets
Ni+1(a) = (tti)(a) = φti(a)ti(a) = S(Ni(a))a + D(Ni(a)).

Let us also remark that this matrix appeared already in an hidden form in 5.2.
Indeed if, in this theorem, p1 = t − b1, . . . , pn = t − bn the matrix V in Theorem
5.2 (4)(Cf. also its proof) is exactly the above Vandermonde matrix. This can be
exploited to get the equivalence between (iii) and (iv) in the following proposition.

Lemma 5.7. For ∆ := {b1, . . . , bn} ⊂ K the following are equivalent
i) ∆ := {b1, . . . , bn} is P-independent.

ii) deg f∆ = n.
iii) Rf∆ =

⋂n
i=1 R(t− bi).

iv) The matrix Vn(b1, . . . , bn) is invertible.

Proof. (i) ⇔ (ii) and (ii) ⇔ (iii) are easy to establish and were proved in
[LL4],[LL5].

(iii) ⇔ (iv) This is a simple application of Theorem 5.2; The irreducible poly-
nomials ”pi’s” in this theorem are in the present case pi = t − bi and, as noticed
above, the matrix V appearing in the statement (3) of 5.2 is exactly the Vander-
monde matrix Vn(b1, . . . , bn). The rest is clear. ¤

Since a W -polynomial is of the form f∆ for some finite subset ∆ ⊂ K, the
above lemma also shows the strong relation existing between W -polynomials and
Vandermonde matrices. This leads to the following theorem which shows, in par-
ticular, that a companion matrix Cf is (S, D)-diagonalizable if and only if f is a
W -polynomial.

Theorem 5.8. Let f ∈ R be a monic polynomial of degree n. Then the following
are equivalent:

i) f is a W -polynomial.
ii) There exists a P-independent set B = {b1, b2, . . . , bn} ⊂ K such that

f = fB.
iii) There exist {b1, b2, . . . , bn} ⊂ K such that V = Vn(b1, b2, . . . , bn) is invert-

ible and

CfV = S(V )diag (b1, b2, . . . , bn) + D(V )

iv) Cf is (S,D)-diagonalizable.
v) The left R-module R/Rf is semi-simple with simple components of dimen-

sion 1 over K.

Proof. These equivalences are special cases of 5.2 using Lemma 5.7. ¤

Remark 5.9. Let us mention that the statement (v) above is specific to the left
R-module R/Rf . In fact, if S is not onto, even right modules such as R/(t− a)R
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need not be semisimple. Consider for instance the field K := k(x) and the k-
endomorphism S given by S(x) = x2. If f(t) := t ∈ R = K[t; S, D] then the
R-module R/fR is finitely generated but not artinian (it contains the descending
chain of right R-modules xtnR + tR for n ∈ N) and so can not be semisimple.

For the more general case of a matrix A we will assume that the endomorphism
S is an automorphism. Let us recall that, in this case, the ring R = K[t; S, D] is a
left and right principal ideal domain. We will need the following definitions:

Definitions 5.10. For f, g ∈ R = K[t;S, D] we say that f strongly divides g,
and we write f ||g, if there exists an invariant element c ∈ R (i.e. cR = Rc) such
that f divides c on the left and c divides g on the left.

Notice, in particular, that if f, g ∈ R are such that f ||g then f divides g on
both sides i.e. g ∈ Rf ∩fR. It is easy to check that the notion of strong divisibility
is left right symmetric.

We can then use the following classical result (Cf. [Co2]).

Lemma 5.11. Let R be a principal ideal domain and let A be an n× n matrix
with coefficients from R. Then there exist invertible n× n matrices P and Q such
that the matrix

PAQ = diag (e1, e2, . . . , en)
where ei strongly divides ei+1, for 1 ≤ i ≤ n− 1.

A matrix A ∈ Mn(K) determines a left R = K[t; S,D]-module structure on the
space of rows Kn. More precisely this structure is given by t ·v = S(v)A+D(v) (in
other words the action of t is given by the map TA defined in the paragraph before
Definition 4.6). We thus have an exact sequence of left R-modules:

0 −→ Rn tI−A−→ Rn ϕ−→ Kn −→ 0
where ϕ is the left R-morphism sending the unit vectors of fi = (0, . . . , 0, 1, 0 . . . , 0) ∈

Rn to the unit vectors of Kn. The above lemma shows that there exist matrices
P, Q ∈ GLn(R) such that P (tI − A)Q = diag (e1, e2, . . . , en). Remarking that if
e = 1 then R/eR = 0, we get, after reindexing the ei’s if necessary, an isomorphism
of left R-modules

(5.1) RKn ∼=
r⊕

i=1

R

Rei
for r ≤ n

The elements e1, . . . , er in this decomposition are called the invariant factors.
They are defined up to similarity. Notice that if two polynomials f, g ∈ R are
similar than f is Wedderburn if and only if g is Wedderburn. This shows that the
statements of our next results are really independent of the representant chosen
for er. We will thus call er ”the last invariant factor”. We are now ready for
the characterization of an (S, D)-diagonalizable matrix. The last invariant factor
”er” will play a key role in the characterization of (S,D)-diagonalizability and
triangulability.

Theorem 5.12. Let K, S, D be a division ring, an automorphism and a S-
derivation of K, respectively. A matrix A ∈ Mn(K) is (S, D)-diagonalizable if and
only if its last invariant factor is a W-polynomial.
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Proof. We use the above notations in particular RKn is decomposed as in
5.1. Since the action of t· is determined by A on Kn and by the Cei

on R/Rei it
then follows from classical facts (Cf. [L]) that there exists an invertible matrix P
such that

(5.2) S(P )AP−1 + D(P ) = diag (Ce1 , Ce2 , . . . , Cer )

It is easy to check that, if the matrices Cei
’s are (S, D)-diagonalizable then

the matrix diag (Ce1 , Ce2 , . . . , Cer ) is (S, D)-diagonalizable. Conversely: assume
that the matrix diag (Ce1 , Ce2 , . . . , Cer

) is (S, D)-diago-nalizable. This matrix rep-
resents the action of t· (left multiplication by t) on RKn ∼= ⊕r

i=1
R

Rei
. Hence there

exists a K-basis {u1, u2, . . . , un} of Kn consisting of eigenvectors for the action of
t·. We thus have, for l ∈ {1, 2, . . . , n}, t · ul = αlul for some αl ∈ K. Decompos-
ing each ul according to the direct sum

⊕r
i=1

R
Rei

, we can write ul =
∑r

j=1 ul,j .
It is then easy to check that for all j = 1, . . . , r and l = 1, . . . , n, the non zero
elements ulj are eigenvectors for left multiplication by t. For all j = 1, . . . , r
the set {ulj | l = 1, . . . , n} is a generating set for R/Rej from which one can ex-
tract a K-basis consisting of eigenvectors for left multiplication by t. This shows
that Ce1 , Ce2 , . . . , Cer are (S,D)-diagonalizable. It is now clear that A is (S, D)-
diagonalizable if and only if the matrices Cei ’s are (S,D)-diagonalizable. Theorem
5.8 shows that this is the case if and only if the polynomials e1, e2, . . . , er are W-
polynomials. By Lemma 5.11 we know that ei divides ei+1 the conclusion of the
theorem now follows from Corollary 3.5. ¤

In the special case when S = Id and D = 0, the above theorem was presented
during a conference in Caen in 2000 by G. Cauchon. He used the quasi determinants
techniques to produce a polynomial and showed that a matrix is diagonalizable if
and only if this polynomial has separate zeros (which means Wedderburn in our
language). In particular, Cauchon didn’t use the Vandermonde matrices and uses
a different technique of diagonalization.

Let us now come to triangularization. The expected result holds: a square
matrix A is triangularizable if and only if the last invariant factor of A is a product
of linear factors. As in the case of diagonalization we will reduce the problem to
the case of a companion matrix.

Proposition 5.13. Let f ∈ R = K[t; S, D] be a monic polynomial of degree n.
The following are equivalent:

(i) Cf is (S,D)-triangularizable.
(ii) There exists a chain of left R-modules of R/Rf

0 = V0 � V1 � · · · � Vn−1 � Vn = R/Rf.

(iii) There exists g1, g2, . . . , gn−1 ∈ R such that

Rf ( Rg1 ( · · · ( Rgn−1 ( R.

(iv) f is a product of monic linear polynomials.

Proof. (i)−→ (ii) Cf represents the left multiplication t· : R/Rf −→ R/Rf in
the basis 1, t, . . . , tn−1. Since Cf is (S,D)-triangularizable one can find v1, . . . , vn

a K-basis of R/Rf such that t · vi ∈ Kv1 + · · · + Kvi. In particular, for any
i = 1, . . . , n, the left K-vector space Vi = Kv1 + · · ·+Kvi is a left R-module. From
this we conclude that these modules satisfy the required property.
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(ii) −→ (iii) Thanks to Lemma 4.7(i), we can find g1, . . . , gn ∈ R such that
Vi = Rgi/Rf . The properties of the Vi’s give the required inclusions between the
Rgi’s.

(iii) −→ (iv) Since deg f = n and the inclusions are strict we must have deg gi =
n− i for i = 1, . . . , n− 1 and we conclude easily.

(iv) −→ (i) Let us write f(t) = (t− an) . . . (t− a1). Lemma 4.7 (2) shows that
Cf is (S, D)-triangularizable. ¤

We are now ready to present the general case of the criterion for (upper) tri-
angularization. For a square matrix A ∈ Mn(K) we denote, as in Theorem 5.12,
by e1, . . . , er the invariant factors of A. Recall that we have e1||e2|| · · · ||er, which
means that there exist invariant polynomials cr, . . . , c1 such that ei|ci|ei+1.

Theorem 5.14. Let K, S,D be a division ring an automorphism and a S-
derivation of K, respectively. Let A ∈ Mn(K) be a square matrix, then A is (S,D)-
triangularizable if and only if the last invariant factor er is a product of monic
linear polynomials.

Proof. Assume that er is a product of linear polynomials. Since we have
e1||e2|| · · · ||er, the fact that R is a U.F.D. implies that e1, . . . , er−1 are also product
of linear polynomials. Proposition 5.13 makes it clear that the matrices Cei are
all triangularizable. Thanks to Equation 5.2 (Cf. the proof of Theorem 5.12), we
know that A is similar to diag (Ce1 , . . . , Cer ) and the result is now clear.

Conversely, assume that A ∈ Mn(K) is triangularizable. Kn is a left R-module
via the action t · v := S(v)A + D(v), v ∈ Kn. Let v1, . . . , vn be a basis of Kn such
that, for all i ∈ {1, . . . , n}, t · vi =

∑i
j=1 αijvj . Decomposing each vi according

to the isomorphism 5.1 we get vi =
∑r

k=1 vik and so we obtain on one hand t ·
vi =

∑i
j=1 αijvj =

∑r
k=1(

∑i
j=1 αijvjk) and on the other hand we have t · vi =

t · ∑r
k=1 vik =

∑r
k=1 t · vik. Since R/Rek is stable by the action of t· and the

decomposition in 5.1 is direct we get t · vik =
∑i

j=1 αijvjk, for k ∈ {1, . . . , r}. Let
us now observe that, for k = 1, . . . , r {vik| i = 1, . . . , n} is a generating set for
R/Rek as left K vector space. It is now easy to check that one can extract a basis
Bk from this generating set such that the matrix representing t · |R/Rek

in the basis
Bk is triangular. Proposition 5.13 then shows that the ek’s are product of linear
polynomials. ¤

6. eigenvalues

In this section we will give some basic facts on eigenvalues of matrices over
division rings. We will again assume that S is an automorphism of the division
ring K. We have seen in the preceding section (see also the paragraph before
Definition 4.6) how to associate with every matrix A ∈ Mn×n(K) a structure of
left R-module on Kn or equivalently how to define a pseudo linear transformation
TA : Kn −→ Kn. Since S is assumed to be an automorphism, the concept defined
so far must be symmetric. In the sequel we will denote nK the row matrix space
of size 1 × n over K and we will use (v)T for the transpose of the matrix v. The
aim of the next lemma is to examine more closely this symmetry.
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Lemma 6.1. (1) δ := −DS−1 is a right S−1-derivation; i.e. δ(ab) = δ(a)S−1(b)+
aδ(b) and R = K[t; S, D] is a left and right principal ideal domain. The el-
ements of R can be written in the form

∑n
i=0 tiai with the commutation rule

at = tS−1(a)−DS−1(a) for any a ∈ K.

(2) We have ∆S,D(a) := {ac := S(c)ac−1+D(c)c−1 | c ∈ K\{0}} = ∆−DS−1,S−1
(a) :=

{ca := caS−1(c−1) + c(−DS−1(c−1)) | c ∈ K \ {0}}.
(3) If A ∈ Mn(K), we can define a structure of right R-module on the set nK of
columns via u.t := LA(u) := AS−1(u)−DS−1(u) where u ∈ nK.
If A ∈ Mn(K) the left R-module Kn and the right R-module nK induced by A gives
rise to the same invariant factors (up to similarity). i.e. Kn ∼= ⊕r

i=1 R/Rei ⇔
nK ∼= ⊕r

i=1 R/eiR.

Proof. (1) This is standard and easy to prove.
(2) It suffices to check that for c ∈ K \ {0} we have ca = ad where d = S−1(c).
(3) Let us compute, for α ∈ K and u ∈ nK, LA(uα) = AS−1(uα)−DS−1(uα) =

AS−1(u)S−1(α)−D(S−1(u)S−1(α)) = AS−1(u)S−1(α)−uDS−1(α)−D(S−1(u))S−1(α) =
LA(u)S−1(α)+u(−DS−1)(α). This shows that (uα).t = (u.t)S−1(α)+u(−DS−1)(α) =
u.(tS−1(α)− (DS−1)(α)) = u.(αt). The rest is clear.

(4) This is due to the fact that the invariant factors are obtained from tI−A ∈
Mn(R) using elementary transformations on rows and columns and hence depend
only on A. ¤

Definition 6.2. For A ∈ Mn×n(K), α, β ∈ K, v ∈ Kn \ {(0, . . . , 0)} and
u ∈ nK \ {(0, . . . , 0)T }, we say that:

(1) α is a left eigenvalue of A associated to v if

TA(v) = αv

.
(2) β is a right eigenvalue of A associated to u if

LA(u) = uβ

We will denote lspec(A) and rspec(A) the sets of left and right eigenvalues of
a matrix A; Spec(A) will stand for the union of left and right eigenvalues.

In the next proposition we collect a few elementary properties of the left and
right eigenvalues.

Proposition 6.3. Let A be a matrix in Mn(K). Then,

(1) lspec(A), rspec(A), Spec(A) are closed under (S,D)-conjugation.
(2) If P ∈ GLn(K),

lspec(A) = lspec(AP ), rspec(A) = rspec(AP ), Spec(A) = Spec(AP ) .

(3) Left eigenvectors corresponding to non (S,D)-conjugate left eigenvalues
are left linearly independent.

(4) Right eigenvectors corresponding to non (S,D)-conjugate right eigenvalues
are right linearly independent.

(5) If α ∈ lspec(A) and β ∈ rspec(A) are not (S, D)-conjugate and v =
(v1, . . . , vn) ∈ Kn, u = (u1, . . . , un)T ∈ nK are the associated eigenvectors
then v.u :=

∑n
i=1 viui = 0.



20 T.Y.LAM, A. LEROY AND A. OZTURK

Proof. (1) Assume α ∈ lspec(A) and let v ∈ Kn be an eigenvector for α. We
thus have TA(v) = αv. If β ∈ K \ {0} we have TA(βv) = S(β)TA(v) + D(β)v =
(S(β)α+D(β))v = (αβ)βv. This shows that αβ is also a left eigenvalue and proves
that lspec(A) is closed under (S,D)-conjugation. Similarly, if λ ∈ rspec(A), u ∈ nK
and µ ∈ K \ {0} are such that LA(u) = uλ, one can check that LA(uS(µ−1)) =
uS(µ−1)λµ.

(2) It is easy to verify that for v ∈ Kn we have TAP (v)P = TA(vP ). From this
one deduces that if λ ∈ K is such that TAP (v) = λv then TA(vP ) = λvP ; This
shows that lspec(AP ) ⊆ lspec(A). The reverse inclusion follows since P ∈ GLn(K).
Similar computations lead to rspec(A) = rspec(AP )

(3), (4) and (5) are easy to prove and can be found in [L], Proposition 4.13. ¤
As in the case when K is a commutative field and S = Id, D = 0 we will now

show that the eigenvalues are exactly the roots of some monic polynomials. In the
classical case the last invariant factor is the minimal polynomial. This polynomial
is unique. In our case the last invariant factor is only defined up to similarity. In
Lemma 6.4 we will compare the roots of similar polynomials. First let us recall
that f, g ∈ R are said to be similar, denoted f ∼ g, iff R/Rf ∼= R/Rg if and only
if R/fR ∼= R/gR. For a polynomial f ∈ R = K[t; S,D], we continue to denote
V (f) the set of its right roots i.e. V (f) = {a ∈ K | f ∈ R(t− a)}. Similarly we will
denote V ′(f) the set of left roots of f i.e. V ′(f) = {a ∈ K | f ∈ (t− a)R}.

Let us recall that, for q ∈ R = K[t; S, D] and x ∈ K \ V (q), the map φq is
defined by φq(x) = xq(x).

Lemma 6.4. Let f, g be similar elements of R and let gamma : R/Rf −→
R/Rg be an isomorphism of left R-modules defined by γ(1 + Rf) = q + Rg. Then
V (f) = φq(V (g)).

Proof. Since γ(f + Rf) = 0 + Rg, there exists q′ ∈ R such that fq = q′g. If
x ∈ V (g)∩V (q) then Rg +Rq ⊆ R(t−x), this would imply that (t−x)+Rg is not
in the image of γ. So if x ∈ V (g), we have x ∈ V (fq) \ V (q) and the formula 2.1
implies that φq(x) ∈ V (f). We thus conclude that φq(V (g)) ⊆ V (f). Similarly if
γ−1(1 + Rg) = p + Rf , we must have φp(V (f)) ⊆ V (g). We also have qp ∈ 1 + Rf
and this implies that φqp is the identity on V (f). It is also easy to check that
φqp = φq ◦ φp (Cf. [LL5]). Thus we get:

V (f) = φqp(V (f)) = φq(φp(V (f))) ⊆ φq(V (g)) ⊂ V (f) .

This yields the result. ¤
Corollary 6.5. If f, g ∈ R = K[t; S, D] are similar, then there exist p, q ∈ R

such that V (g) ∩ V (q) = V (f) ∩ V (p) = ∅, V (f) = {αq(α) |α ∈ V (g)} and V (g) =
{βp(β) |β ∈ V (f)}.

Of course, there exist similar statements for the left roots using the left analogue
of the map φ.

We can now give the analogue of the classical fact that roots of the minimal
polynomial are exactly the eigenvalues of the matrix.

Proposition 6.6. Let A ∈ Mn(K) and {e1, . . . , er} be a matrix and a complete
set of invariant factors for A. Denote by ∆(er) the set {f ∈ R | f ∼ er}, then the
following are equivalent:

i) β ∈ rspec(A).
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ii) There exists γ ∈ K \ {0} such that βγ ∈ V (er).
iii) There exists a polynomial e′r ∈ ∆(er) such that β ∈ V (e′r).

Similar statements hold for elements of lspec(A) and V ′(er).

Proof. (i) ⇒ (ii) Assume u ∈ nK \ {0} is such that LA(u) = uβ. This also
means that while considering nK as a right R-module, u · (t−β) = 0. According to
the decomposition obtained in Lemma 6.1(4), we write u = (u1+e1R, . . . , ur+erR).
Since u 6= 0, we get that there exists i ∈ {1, . . . , r} such that ui /∈ eiR 6= 0 but
ui(t − β) ∈ eiR. We may assume that deg(ui) < deg(ei) and, comparing degrees,
we conclude that there exists an element γ ∈ K \ {0} such that ui(t − β) = eiγ.
This leads to uiS(γ−1)(t − βγ) = ei. Since ei divides er on the right, we do get
that βγ ∈ V (er).

(ii) ⇒ (iii) By the hypothesis there exists γ ∈ K \ {0} and g ∈ R such that
g(t − βγ) = er. Multiplying by γ on the right, we get g(t − βγ)γ = erγ i.e.
gS(γ)(t−β) = erγ. This yields the result since e′r := erγ is obviously similar to er.

(iii) ⇒ (ii) This is clear from Corollary 6.5.
(ii) ⇒ (i) Since βγ ∈ V (er), we easily get that βγ ∈ rspec(A) and the fact that

rspec(A) is closed by (S,D) conjugation implies that β ∈ rspec(A). ¤

We can now conclude:

Corollary 6.7. Let A be a matrix in Mn(K) and {e1, . . . , er} be a complete
set of invariant factors for A such that e1||e2 . . . ||er. Then

(1) lspec(A) =
⋃

f∈∆(er) V ′(f) .

(2) rspec(A) =
⋃

f∈∆(er) V (f) .

In particular, if Γr := {q ∈ R |Rq + Rer = R and deg q < deg er} then rspec(A) =⋃
q∈Γr

φq(V (er)).

Corollary 6.8. Let A be a matrix in Mn(K). The number of non (S,D)-
conjugate elements in Spec(A) is bounded by deg(er).

Proof. Notice that if f ∈ ∆(er), Corollary 6.5 shows that the conjugacy
classes intersecting V (f) also intersect V (er). Hence the (S, D) conjugacy classes
intersecting rspec(A) also intersect V (er). Similarly the (S,D) conjugacy classes in-
tersecting lspec(A) also intersect V ′(er). Now, Corollary 3.2 shows that the number
of (S, D)-conjugacy classes intersecting Spec(A) is bounded by deg(er). ¤

7. G-algebraic sets and G-polynomials

In this section we will restrict our attention to the case when S = Id and D = 0.
K will stand for a division ring, G will denote a group of automorphisms of K and
KG := {x ∈ K|σ(x) = x ∀σ ∈ G}.

Definition 7.1. A subset ∆ ⊆ K is G-algebraic if there exists a monic poly-
nomial f ∈ KG[t] such that f(x) = 0 for all x ∈ ∆. The monic polynomial in KG[t]
of minimal degree annihilating ∆ is denoted f∆,G. Polynomials of the form f∆,G

will be called G-polynomials. In particular, if G = {Id} we find back the notion of
an algebraic set in the sense defined in Wed1 ([LL5]).

It will sometimes be useful to denote the unique monic least left common mul-
tiple of a set Γ of (monic) polynomials by Γ`. Of course, every G-algebraic set is
algebraic; the next proposition gives characterizations of G-algebraic sets. Let us
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first recall that a P -basis for an algebraic set ∆ ⊆ K is a minimal subset Γ ⊆ ∆
such that fΓ(∆) = 0.

Proposition 7.2. With the above notations, the following are equivalent:
i) ∆ is G-algebraic.
ii)

⋃
σ∈G σ(∆) is algebraic.

iii) ∆ is algebraic and for all a ∈ ∆, {σ(a)|σ ∈ G} is algebraic.
iv) ∆ is algebraic and if {a1, a2, . . . , an} is a P -basis for ∆ then {ai} is G-

algebraic for 1 ≤ i ≤ n.
v) There exists a left common multiple of the set {t− σ(a) |σ ∈ G, a ∈ ∆}

Proof. (i) =⇒ (ii) If f ∈ KG[t] is such that f(∆) = 0 then f(∆σ) = 0 for all
σ ∈ G. Hence f(

⋃
σ∈G σ(∆)) = 0.

(ii) =⇒ (iii) Since ∆ ⊆ ⋃
σ∈G σ(∆), we have that ∆ is algebraic. Similarly for all

a ∈ ∆, G.a := {σ(a)|σ ∈ G} ⊆ ⋃
σ∈G σ(∆), hence G.a is algebraic and its minimal

polynomial is precisely the monic generator of the left ideal
⋂

σ∈G R(t− σ(a)) 6= 0.
In other words, fG.a = {t− σ(a)|σ ∈ G}` ∈ KG[t].
(iii) =⇒ (iv) This is obvious.
(iv) =⇒ (v) Let {a1, a2, · · · , an} be a P -basis for for ∆ and define fi to be the
left common multiple of the set {t − σ(ai) | σ ∈ G}. Then fσ

i = fi ∈ KG[t] for
all i ∈ {1, 2, · · · , n}. Hence we have f := {fi | i = 1, 2, · · · , n}` = {t − σ(a) | σ ∈
G , a ∈ {a1, a2, · · · , an}}` ∈ KG[t]. However a ∈ ∆ implies that t−a divides on the
right {t−ai | i ∈ {1, 2, · · · , n}}` which itself divides f on the right. Since f ∈ KG[t]
we thus get that f is a left common multiple of the set {t− σ(a) | σ ∈ G , a ∈ ∆}.
(iv) =⇒ (i) This is left to the reader. ¤

Remarks 7.3. (a) Of course, if G is a finite group then every algebraic set is
G-algebraic.
(b) Notice that in the case when K is commutative, a G-algebraic set must be finite.
(c) Part (iii) of the above proposition explains why we will be mainly concerned
with G-algebraic sets of the form {σ(a)|σ ∈ G} for some a ∈ K; this set will be
denoted by G.a.

Corollary 7.4. Any G-polynomial f = f∆,G factorizes linearly: f = (t −
b1) · · · (t− bn) in K[t], where b1, . . . , bn are conjugated to elements in

⋃
σ∈G σ(∆).

Moreover any root of f is conjugated to a certain bi, 1 ≤ i ≤ n.

Proof. These are obvious consequences of the above proposition and of our
earlier results in [LL5]. ¤

Examples 7.5. (a) Let G be the set of all inner automorphisms of K i.e.
G = {Ix|x ∈ K∗}. Then KG = Z(K) the center of K. An element is then G-
algebraic if it is algebraic over the center Z(K). In particular the above corollary
gives back the Wedderburn classical theorem: If an element a of a division ring K
is algebraic over the center Z(K) then its minimal polynomial factorizes in K[t]
into linear factors of the form t− b where b ∈ K is conjugate to a.
(b) Let D be a division subring of K and put L = CK(D) the centralizer of D in K.
Then L = KG for G = {Ix|x ∈ D∗} hence an element a ∈ K is algebraic over L if
and only if it is G-algebraic. In this case, the above corollary shows that its minimal
polynomial over L factorizes linearly in K[t]. In particular, this conclusion holds if
K is a finite dimensional division ring over its center Z(K). Any subdivision ring



WEDDERBURN POLYNOMIALS OVER DIVISION RINGS, II 23

L such that Z(K) ⊆ L ⊆ K of a finite dimensional division ring K since in this
case L = CK(CK(L)).

Theorem 7.6. Let G be a group of automorphisms of K, and suppose that
a ∈ K is algebraic over KG. Define Ga := {σ ∈ G |σ(a) ∈ ∆(a)}, where ∆(a) =
{ax |x ∈ K \ {0}}. Then:

(a) Ga is a subgroup of G.
(b) For any σ , τ ∈ G we have σGa = τGa (resp. Gaσ = Gaτ) if and only if

∆(σ(a)) = ∆(τ(a)) (resp. ∆(σ−1(a)) = ∆(τ−1(a))).
(c) Ga is of finite index in G.
(d) The decomposition of G into its right cosets modulo Ga corresponds to

the decomposition of G.a into conjugacy classes. More precisely if G =⋃n
i=1 σiGa is the decomposition of G into its right cosets modulo Ga, then

G.a =
⋃n

i=1 σi(Ga.a) is the decomposition of G.a into conjugacy classes.
(e) rk (G.a) = deg fa,G = (G : Ga)rkGa.a = (G : Ga) deg fa,Ga

= (G :
Ga) dimC Y C, where Y ⊆ K \ {0} is such that Ga.a = aY and C =
CS,D(a) is the (S, D) centralizer of a. More precisely, if {y1, y2, · · · , yn}
is a maximal C-independent set in Y , then σ(ayj ) is a P -basis for G.a.

(f) If Ga = {Id}, then Gin. := {σ ∈ G |σ is inner} = {Id}. Moreover, if σ
and τ are different elements in G, then σ(a) and τ(a) belong to different
conjugacy classes.

Proof. (a) This is left to the reader.
(b) Suppose σGa = τGa. We can write σ = τg1 for some g1 ∈ Ga. The definition
of Ga shows that there exists x1 ∈ K such that g1(a) = ax1 . For y ∈ K we then
have σ(a)y = τ(g1(a))y = τ(ax1)y = (τ(a)τ(x1))y = τ(a)yτ(x1). This shows that
∆(σ(a)) ⊆ ∆(τ(a)). The reverse inclusion is proved similarly.
The proof of sufficiency of the condition, as well as the proof of the analogue left-
right statements, are left to the reader.
(c) Since G.a is algebraic, it can only intersects a finite number of conjugacy classes
i.e. the number of conjugacy classes of the form ∆(σ(a)) where σ ∈ G is finite.
Part b) above yields the thesis.
(d) This is easily deduced from b) above.
(e) This is a direct consequence of d) above using results from [LL2].
(f) Theses are easy consequences of definitions. ¤

Let us remark that the subgroup Ga contains the subgroup Gint of all the inner
automorphisms.

Example 7.7. The condition (G : Ga) < ∞ is not sufficient for a to be G-
algebraic: for instance if G = Gint, then KG = Z(K), the center of K and G = Ga

for any a ∈ K but of course a is not necessarily algebraic over Z(K).

Before giving necessary and sufficient conditions for a to be G-algebraic let us
recall that a subset of a conjugacy class ∆(a), say aY , is algebraic if and only if
the right C(a)-vector space Y C(a) generated by Y over the centralizer of a is finite
dimensional. (Cf. Proposition 4.2 in [LL2])

Proposition 7.8. Let a be an element of K and Y a subset of K \ {0} such
that Ga.a = {ay | y ∈ Y }. Then a is G-algebraic if and only if the right C(a)-vector
space generated by Y is finite dimensionnal and (G : Ga) < ∞.
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Proof. If G.a is algebraic, we have seen in Theorem 7.6 that (G : Ga) < ∞.
On the other hand, since Ga.a ⊆ G.a, it is clear that Ga.a is an algebraic subset
contained in ∆(a). This implies that the C(a)-right vector space generated by Y is
finite dimensional.
Conversely, suppose that (G : Ga) < ∞ and let σ1, . . . , σl be such that G =⋃l

i=1 σiGa. Then G.a =
⋃l

i=1 σiGa.a =
⋃l

i=1 σi(a)σi(Y ) is the decomposition
of G.a into conjugacy classes. It is easy to check that, for any i = 1, . . . , l,
dimC(a) Y C(a) = dimC(σi(a))(σi(Y )C(σi(a)). Since dimC(a) Y C(a) < ∞, we con-
clude that the subsets σiGa.a are algebraic for i = 1, . . . , l. From this and the
decomposition of G.a given above we get the result. ¤

We will end this section with some results about the irreducibility of a G-
polynomial. First let us notice that a G-polynomial is not always irreducible:

Example 7.9. Let K = H, denote the real quaternions and G = {Id, In(i)},
where In(i) stands for the inner automorphism induced by i. Clearly, KG = C.
Consider a = j, G.a = {j, ji} is algebraic with minimal polynomial t2 + 1 ∈ C[t].
Since t2 + 1 = (t + i)(t− i) we conclude that the G-polynomial t2 + 1 is reducible
in KG[t].

Let us recall, from our earlier work, the following definition:

Definition 7.10. An algebraic set ∆ ⊆ K is said to be full if V (f∆) = ∆.

Proposition 7.11. Let a ∈ K be a G-algebraic element such that ∆ := G.a is
full then f∆ is irreducible in KG[t].

Proof. Assume f∆ = gh in KG[t]. If deg h > 0 then, since f∆ is a W -
polynomial, we get that V (h) 6= ∅. Now if x ∈ V (h), then x ∈ V (f∆) = ∆, where
the last equality comes from the hypothesis that G.a is full. Since h ∈ KG[t] we
have, for any σ ∈ G, 0 = σ(h(x)) = h(σ(x)). We thus get that h(G.x) = 0. Now
writing x = τ(a) for some τ in G, we easily get that G.x = G.a = ∆ and hence,
h(∆) = 0. This shows that h = f∆. ¤

Remark 7.12. The above sufficient condition for irreducibility in KG[t] of a
minimal polynomial of a G-algebraic set is not necessary, i.e. a G-algebraic set
∆ such that f∆ is irreducible in KG[t] is not necessarily full. Indeed, consider
K = HQ the quaternions over the rational numbers, G = {Id, Int(i)}, KG = Q(i)
and a = i + j. Then G.a = {i + j, i − j} is algebraic. fG.a ∈ Q(i)[t] has degree
2 and V (fG.a) = {(i + j)λ+iµ |λ, µ ∈ CH(i + j)}. This shows that G.a is not full.
Now, if fG.a has a root in Q(i) then there exists x ∈ HQ such that (i + j)x ∈ Q(i).
Let us write (i + j)x = α + iβ with α, β ∈ Q. Taking traces on both sides of this
equation, we get α = 0 and looking at norms we then conclude that β2 = 2. Since
this last relation is impossible we can conclude that fG.a is irreducible in Q(i).

The above proposition and Theorem 7.6 immediately leads to the following:

Corollary 7.13. Assume the group Ga is trivial: Ga = {1} then ∆ = G.a is
full and f∆ is irreducible in KG[t].

In the same spirit, let us mention the following necessary and sufficient con-
dition for irreducibility of the minimal G-polynomial associated to a G-algebraic
set:
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Proposition 7.14. Let a ∈ K and ∆ = G.a be algebraic. Then f∆ is irre-
ducible in KG[t] if and only if for any b ∈ K such that f∆(b) = 0 we have f∆ = fG.b.

Proof. Assume f∆(b) = 0 then f∆(G.b) = 0 and hence fG.b divides on the
right f∆ in KG[t]. Moreover, since f∆ is irreducible, we get that fG.b = f∆.
Conversely, assume f∆ = gh in KG[t] with h monic and deg h ≥ 1. Then there exists
x ∈ ∆ = G.a such that h(x) = 0 and so h(∆) = 0 which shows that h = f∆. ¤
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