Name: _____

Section: _____

Math 54 Lec 006 Quiz 9

Tuesday, July 24, 2018

Justify your assertions; include detailed explanation, and show your work. Closed book exam, no sheet of notes and no calculator. This quiz is worth 9 points total.

1. (3 points) Let
$$A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}$$
. Orthogonally diagonalize $A^T A$.

 $A^{T}A = \begin{pmatrix} 3 & 3 \\ 3 & 11 \end{pmatrix} \text{ which has eigenvalues } \lambda_{1} = 12, \lambda_{2} = 2. \text{ For } \lambda_{1} = 12, \text{ the corresponding eigenvector}$ is $\frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, while for $\lambda_{2} = 2$, the corresponding eigenvector is $\frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$. Thus $A^{T}A = \begin{pmatrix} 3 & 3 \\ 3 & 11 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 12 & 0 \\ 0 & 2 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}^{T}$ 2. (3 points) Let A be the matrix given in question 1. For what x does $x^T A^T A x$ reach its maximum? What is the maximum value of $x^T A^T A x$?

$$x = \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\ 3 \end{pmatrix}$$
, where the maximum value of $x^T A^T A x = 12$

3. (3 points) Show that if $v \in \text{Null}(A^T A)$, then $v \in \text{Null}(A)$.

$$v \in \text{Null}(A^T A) \iff A^T A v = 0 \implies v^T A^T A v = 0 \iff (Av) \cdot (Av) = 0 \iff Av = 0$$