Math 54 Handout 8

July 2, 2018

Question 1.

Find a basis for Null(A), where

Question 2.

Find a basis for the subspace spanned by the given vectors:

$$\left\{ \left(\begin{array}{c}1\\0\\2\end{array}\right), \left(\begin{array}{c}3\\1\\1\end{array}\right), \left(\begin{array}{c}9\\4\\-2\end{array}\right), \left(\begin{array}{c}-7\\-3\\1\end{array}\right) \right\}$$

Question 3.

The first four Laguerre polynomials are $1, 1-t, 2-4t+t^2, 6-18t+19t^2-t^3$. Show that these polynomials form a basis of $P_3[t]$. Compute the coordinates of $7-8t+3t^2$ in this basis.

Question 4.

True of False: Given V, W subspaces of some vector space H, then their intersection $U \cap V$ is also a subspace of H.

Question 5.

Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$.

- 1. Show that T is a linear transformation.
- 2. Let B be in $M_{2\times 2}$ such that $B = B^T$, find an A such that T(A) = B.
- 3. Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T = B$.
- 4. Describe the kernel of T.