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Question 1.

Compute the Fourier series for
f(x) = |x|, −L ≤ x ≤ L

Since |x| is an even function, automatically all coefficient for the sine part is 0, so we only need to compite
the cosine coefficient.
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So we see that
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Question 2.

Compute the Fourier cosine series and Fourier sine series for

f(x) = L− x, 0 ≤ x ≤ L

The Fourier cosine series for −x is
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Question 3.

Solve the following heat flow problem
∂u
∂t = ∂2u

∂x2

u(0, t) = u(L, t) = 0

u(x, 0) = 1

The solution is of the form
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so all we need to do is find the Fourier sine series of 1. We compute
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so we see that the solution is
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