Math 54 Handout 13

July 16, 2018

Question 1.

Let
$$y = \begin{pmatrix} 4\\8\\1 \end{pmatrix}$$
, $u_1 = \begin{pmatrix} \frac{2}{3}\\\frac{1}{3}\\\frac{2}{3} \end{pmatrix}$, $u_2 = \begin{pmatrix} \frac{-2}{3}\\\frac{2}{3}\\\frac{1}{3} \end{pmatrix}$ and let $W = \operatorname{Span}\{u_1, u_2\}$.

- 1. Let $U = (u_1 \ u_2)$. Compute $U^T U$ and $U U^T$.
- 2. Compute $\operatorname{Proj}_W y$ and $UU^T y$.

Question 2.

Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{w_1, ..., w_p\}$ and let $\{v_1, ..., v_q\}$ be an orthogonal basis for W^{\perp} .

- 1. Explain why $\{w_1,...,w_p,v_1,...,v_q\}$ is an orthogonal set.
- 2. Explain why the above set span \mathbb{R}^n .
- 3. Show that $\dim(W) + \dim(W^{\perp}) = n$.

Question 3.

Find an orthogonal basis for the column space of the matrix

$$\left(\begin{array}{rrrr} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{array}\right)$$

Question 4.

Find a least square solution to
$$Ax = b$$
, where $A = \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix}$ and $b = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$