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Question 1.

If v ∈W ∩W⊥, then v is orthogonal to itself, and hence v · v = 0. But this implies v = 0.

Question 2.

Checking they are orthogonal is checking the dot product between distinct vectors. For example 1
0
1
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 = −1 + 0 + 1 = 0

We want to now express

 8
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 as a linear combinations of elements in the orthogonal set. To do this we
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so v = 5
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Question 3.

We can either check that the columns are orthonormal, or we can just brute force multiply UTU . For
both cases, we we multiply UTT , we get( √
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)
 1 0 0

0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 =

 1 0 0
0 1 0
0 0 1


Question 4.

Since UTU = I, we see that det(UTU) = det(UT )det(U) = det(U)2 = 1, so det(U) = ±1.

Question 5.

(Ax) · (Ax) = (Ax)T (Ax) = xTATAx = xTx = x · x.
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Question 6.

LetW be the subspace spanned by the u′s and write y as a sum of a vector inW and a vector orthogonal
to W , where

y =
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.

Now y − ProjW y =
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