Math 54 Handout 10

July 9, 2018

Question 1.

Let

$$A = \left(\begin{array}{rrrr} 3 & -2 & 5\\ 1 & 0 & 7\\ 0 & 0 & 2 \end{array}\right)$$

Find all real eigenvalues of A and their multiplicities.

Question 2.

Let

$$A = \left(\begin{array}{rrrr} 3 & 0 & -2 \\ -7 & 0 & 4 \\ 4 & 0 & 3 \end{array}\right)$$

Is this matrix diagonalizable? Why or why not?

Question 3.

Suppose that in the standard basis of \mathbb{R}^2 , the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$T\left(\begin{array}{c}a\\b\end{array}\right) = \left(\begin{array}{c}b\\a\end{array}\right)$$

- 1. Find the matrix representation of T in the standard basis.
- 2. If $\mathfrak{B} = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$, find $[T]_{\mathfrak{B}}$.

3. Show that there can be no basis \mathfrak{A} such that $[T]_{\mathfrak{A}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Question 4.

Suppose that in the standard basis of \mathbb{R}^2 , the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is given by the matrix $\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}$. If $\mathfrak{B} = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$, find $[T]_{\mathfrak{B}}$.

Question 5.

True of False:

- 1. If A and B commute, and if v is an eigenvector of A with eigenvalue λ , then Bv is also an eigenvector of A with eigenvalue λ .
- 2. If A^2 is diagonalizable, then so is A.
- 3. A 3×3 matrix has always one real eigenvalue.