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Question 1.

Let X = Spec k[x1, x2, ...], and let U = X − V (m) where m is the maximal ideal (x1, x2, ...). We will
take two copies of X (denote by X1 and X2), and we will glue them together along the open set U1 and
U2 where Ui = Xi − V (m) for i = 1, 2. We glue them together by just using the identity isomorphism of

schemes (U1,OX1
|U1

)
i↔ (U2,OX2

|U2
). We denote the resulting space by W , and we will show that this is

not quasiseparated. Consider the two affine opens X1, X2 ⊂ W , then X1 ∩ X2
∼= U1

∼= U2, and 4.6.G in
Vakil showed that U1 (or U2) is not quasicompact, and hence it cannot possibly be a finite union of affine
open subsets (since finite union of affine opens are quasicompact). Thus W is not quasiseparated.

Question 2.

Let B be a finite A-algebra, define a graded ring S• by S0 = A and Sn = B for all n > 0. Given any
prime ideal p in B, we let p′ be a homogeneous prime ideal in S• where (p′)0 = A and (p′)n = p for all
n > 0. This is homogeneous (generated by homogeneous elements as Sn = B for all n > 0), and it is prime
because if a′ ∈ Sn and b′ ∈ Sm are such that a′b′ ∈ (p′)n+m, then when considered as just elements of p,
we see that a′ ∈ p or b′ ∈ p. Thus a′ ∈ (p′)n or b′ ∈ (p′)m, and hence p′ is a homogeneous prime ideal. On
the other hand, given a homogeneous prime ideal p′, then we will show that (p′)n = (p′)m for all n,m > 0.
Suppose b ∈ (p′)n for some n, then for 1 ∈ S1, we see that 1 · b = b ∈ (p′)n+1, thus b ∈ (p′)m for all m > n.
On the other hand, let 1 ∈ S1 and b ∈ Sn−1, then 1 · b = b ∈ (p′)n, so either 1 ∈ (p′)1 or b ∈ (p′)n−1.
However, 1 /∈ (p′)1 so we see that b ∈ (p′)n−1. Thus we see that b ∈ (p′)m for all 0 < m < n. Thus for p′

a homogeneous prime ideal, we send it to p′′ = (p′)1, which is a prime ideal in B because (p′)n = (p′)m for
all m,n. From our construction, the map p ∈ SpecB 7→ p′ ∈ ProjS• 7→ p′′ = p ∈ SpecB is the identity,
and p′ ∈ ProjS• 7→ p′′ ∈ SpecB 7→ p′ ∈ ProjS• is also the identity. Thus we see that we have a bijection
of points in the topological space f : ProjS• ∼ SpecB. Now this map f takes D+(h) to D(h) because
if h is contained in a homogeneous prime ideal p′, then h ∈ (p′)n for all n, and hence it will be in p′′

and vice versa. Therefore we have a homeomorphism ProjS• ∼= SpecB. It gives an isomorphism on the
structure sheaf because given any h ∈ Sn, we see that Bh

∼= ((S•)h)0 (since Sn = B), and thus we have that
ProjS• ∼= SpecB is an isomorphism.

Question 3.

Suppose X = Spec A and Y = Spec B, and π : Spec A → Spec B, then given any point q ∈ Spec B,
we know from 10.3 in Vakil that the fiber above q is Spec (A ⊗B Bq/qBq). We will show that the map
π′′ : Spec (A ⊗B Bq/qBq) → Spec (Bq/qBq) is a finite morphism, and we will do this in two steps. We
can choose to localize first and then take quotient, or we can quotient first and then localize, but it doesn’t
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matter as the square below commutes (5.3.4.1 in Vakil):

B
localize

> Bq

B/q

quotient
∨ localize

> Bq/qBq = K(B/q)

quotient
∨

So we will quotient first. By assumption, π] : B → A makes A a finite B-algebra. Consider the following
corresponding diagrams

Spec (A⊗B B/q) > Spec A A⊗B B/q < A

Spec B/q

π′
∨

> Spec B

π
∨

B/q

(π′)]
∧

< B

π]
∧

Since π] : B → A makes A a finite B-algebra, we let a1, ..., an be the generators for A as a B-module, then
we see that A⊗B B/q is finitely generated as a B/q-module by a1 ⊗ 1̄, ..., an ⊗ 1̄ because

(π](b1)a1 + ...+ π](bn)an)⊗ b̄ = π](b1)a1 ⊗ b̄+ ...+ π](bn)an ⊗ b̄
= a1 ⊗ b̄1b̄+ ...+ an ⊗ b̄nb̄
= (π′)](b1b)(a1 ⊗ 1̄) + ...+ (π′)](bnb)(an ⊗ 1̄)

Thus we see that (π′)] : B/q → A⊗B B/q makes A⊗B B/q into a finite B/q-algebra.

On the other hand, we will show that localization also does not change the finiteness condition. Again
we consider the following corresponding diagrams

Spec (A⊗B Bq) > Spec A A⊗B Bq < A

Spec Bq

π′

∨
> Spec B

π
∨

Bq

(π′)]
∧

< B

π]
∧

Following an almost identical computation, we see that (π′)] : Bq → A⊗B Bq makes A⊗B Bq into a finite
Bq-algebra.

Now as the fiber above q is given by the square of fibers

Spec (A⊗B Bq/qBq) > Spec A

Spec Bq/qBq

π′′
∨

> Spec B

π
∨

and π′′ can be obtained by first taking quotient and localizing, we see that π′′ is finite, and as Bq/qBq is
a field, by 8.3.H, the fiber Spec A ⊗ Bq/qBq is finite. Thus we conclude that finite morphisms have finite
fibers.

Question 4.

(a) For open immersions, we can just consider (U,OX |U )
i
↪→ (X,OX) an inclusion of open subscheme

(U,OX |U ). Suppose Spec B is an affine open in X, then i−1(Spec B) = U ∩Spec B is open in X and in Spec
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B, so we let D(f) ∈ i−1(Spec B) be an basic open where f ∈ B. Then we see that the induced morphism
is just the map to localization B → Bf , and Bf is a finitely generated B-algebra (generated by 1). Thus

we see that the inclusion (U,OX |U )
i
↪→ (X,OX) is locally of finite type. Thus we can conclude that open

immersions are locally of finite type, and hence quasicompact open immersion is of finite type.

We will show that every open immersion into a locally Noetherian scheme is of finite type. From 8.1.B
(or by part (c)), if f : X → Y is an open immersion, then if Y is a locally Noetherian ring, then so is X.
Now 8.3.B show that every morphism from a locally Noetherian scheme is quasicompact, and thus as open
immersions are locally of finite type, these two combined inplies that f is of finite type. Thus every open
immersion into a locally Noetherian scheme is of finite type.

(b) Consider f : X → Y and g : Y → Z each locally of finite type. Then given any affine open SpecB ⊂,
we see that g−1(Spec B) can be covered by affine opens Ui such that the induced map B → Ui makes Ui into
a finitely generated B-module. On the other hand, for each of these Ui, f

−1(Ui) can be covered by affine
open Vij where the induced map Ui → Vij makes Vij into a finitely generated Ui-module. Then we see that
(g ◦ f)−1Spec B =

⋃
Vij is a union of affine opens, and B → Vij makes Vij a finitely generated B-module

(as it is the composition B → Ui → Vij). Thus we conclude by 8.3.O that the composition g ◦ f is locally of
finite type.

(c) Suppose f : X → Y is locally of finite type, and Y is locally Noetherian. Then we see that Y can
be covered by affine open Spec Bi where Bi is Noetherian for all i ∈ I some indexing set. Now by definition
of morphisms locally of finity type, we see that any affine open subset Aij (here j ∈ J an indexing set
dependant on what i is) of f−1(Spec Bi) the induced morphism Bi → Aij makes Aij a finitely generated
Bi-algebra. However, every finitely-generated commutative algebra over a commutative Noetherian ring is
Noetherian, and thus Aij are Noetherian for all i, j. Now as the Bi covers Y , we see that Aij covers X, and
thus X is locally Noetherian. If f : X → Y is of finite type, and Y is Noetherian, then the quasicompactness
of f implies only finitely many affine open sets Aij (we get these Aij following an almost identical argument
as before) cover X, and hence X is Noetherian.

Question 5.

Vakil 3.5 stated that exactness of a sequence of sheaves may be checked at the level of stalks. Suppose G′ →
G → G′′ is an exact sequence of OX -modules, then we see that G′x → Gx → G′′x is exact for all x ∈ X. Now by
right exactness of tensor product of OX,x-modules, we see that G′x⊗OX,x

Fx → Gx⊗OX,x
Fx → G′′x ⊗OX,x

Fx

is exact. Now as (Gx ⊗OX,x
Fx) ∼= (G ⊗OX

F)x we see that (G′ ⊗OX
F)x → (G ⊗OX

F)x → (G′′ ⊗OX
F)x is

exact. Thus we see that (G′ ⊗OX
F)→ (G ⊗OX

F)→ (G′′ ⊗OX
F) is exact on stalks, and hence it is exact.

(Here I did not use locally free sheaf, and it seems to also be right exact. I do not know what is missing).

Question 6.

We will check the axiom of groups. Tensor product is associative, and for commutative rings R and
R-algebras A,B, there is an isomorphism A ⊗R B ∼= B ⊗R A, and thus we see that for sheaves of OX -
modules F ,G, there is an isomorphism F ⊗OX

G ∼= G ⊗OX
F . Given any sheaf of OX -modules F , we see

that F ⊗OX
OX
∼= F , and 14.1.D shows that if F is an invertible sheaf, then F ⊗ F∨ ∼= OX . Thus we see

that the invertible sheaves on X up to isomorphism form an abelian group with identity OX , and for every
element F the inverse is F∨.
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