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Question 1.

Suppose X is a quasicompact scheme (so write as X = ∪ni=1Ui for Ui affine), then given any point p ∈ X,
we can let p ∈ U1 (renumber if needed) be an affine open containing p. Then as U1 is affine, we see that the
closure of p contains a closed point p1 of U1 (since p ∈ U1 must be contained in a maximal ideal) If p1 is
closed in X then it is good. Otherwise p1 is not closed in X, then we take the closure of p1, and there must
be a point p2 that is not p1. Since p2 6= p1, we see that p2 /∈ U1, so we let (renumber if needed) p2 ∈ U2.
Now as the closure of p2 inside U2 contains a closed point (U2 is affine), we can pick p2 to be the closed
point in U2. If p2 is closed in X, then we are done. Otherwise take the closure again of p2, and take p3 in
the closure. Now as p3 ∈ {p2} ⊂ {p1}, we see that p3 /∈ U1 ∪ U2, and hence by a similar argument can pick
p3 ∈ U3 to be a maximal ideal in U3. Continuing this way we see that as X is quasicompact, this process
must terminate (as we have only finitely many Ui), and hence the closure of p in X must contain a closed
point. It follows that every non-empty closed subset of X contains a closed point of X, and in particular,
every non-empty quasicompact schemes has a closed point.

Question 2.

Suppose a scheme X is quasicompact, then X can be covered by a finite number of affine opens because
a scheme can always be covered by an arbitrary amount of affine opens. If X is also quasiseparated, then
we see that the intersection of any two such can be covered by finitely many affine opens.

On the other hand, suppose X can be covered by a finite number of affine opens, then since affine open
schemes are quasicompact, a finite union of them are also quasicompact. If the intersection of any two such
can be covered by finitely many affine opens, I was unable to show that the intersection of any two affine
open is the union of affine open subsets.

Question 3.

Suppose a scheme X is integral, then by definition, X is reduced because integral domains have no
non-zero nilpotents. X is irreducible because if not, then there exist two open subset U1, U2 that does not
intersect. But then OX(U1 ∪ U2) is just the product OX(U1)×OX(U2), which is not an integral domain, a
contradiction. Thus X is irreducible.

On the other hand, if X is reduced and irreducible, we let U be any affine open. Then we see that U is
irreducible. Now as U = SpecA is irreducible, there is a unique minimal prime ideal p0 in A. Since OX(U) has
no nonzero nilpotent, we see that p0 ⊂ ∩p = nil(A) = (0), and so (0) is prime, and hence OX(U) is an integral
domain. Now given any arbitrary open set V , we consider the injective map OX(V ) →

∏
x∈V OX,x. Note

that OX,x is an integral domain (as sections on affine opens are integral domains). Given any f, g ∈ OX(V )
such that fg = 0, we let {fx}, {gx} be the images of f, g in

∏
x∈V OX,x (so fxgx = 0 ∈ OX,x). The sets

A = {x ∈ V : fx = 0} and B = {x ∈ V : gx = 0} are closed and A ∪ B = V , so A = V or B = V as V is
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irreducible. Thus we see that f or g is 0, and hence OX(V ) is an integral domain. As V is arbitrary, we see
that X is integral.

Question 4.

1. We will denote Z/(x2 − n) = Z[
√
n] and K(Z/(x2 − n)) = Q/(x2 − n) = Q[

√
n] where K(−) is taking

the field of fractions. We will use a theorem in algebraic number theory that states that the integral
closure of a ring R in an extension S is integrally closed. We let S = Q[

√
n] and R = Z. Now suppose

a + b
√
n ∈ Q[

√
n] is integral over Z, we note first of all that a − b

√
n is also integral, and as integral

elements form a ring, it follows that 2a and a2 − nb2 are also integral over Z. So we see that 2a and
a2 − nb2 are in Z. Note then also 4nb2 ∈ Z. If a /∈ Z, then we see that n ≡ 1 mod 4, which is not
possible, and hence a ∈ Z. Then nb2 ∈ Z, and so together with 4nb2 ∈ Z shows that 4b2 is even, and
thus 2b is even and hence b ∈ Z. Thus a + b

√
n ∈ Z[

√
n]. Thus we see that Z/(x2 − n) is integrally

closed, and hence Spec(Z/(x2 − n)) is normal.

2. We will use question 6.4.H to do this part. 6.4.H states that if A is a unique factorization domain with
2 invertible, f ∈ A has no repeated prime factors, and z2 − f is irreducible in A[z], then A[z]/(z2 − f)
is normal. We let A = k[x1, ..., xm−1, xm+1, xn], which is a UFD, and we let f = −(x21 + ...x2m−1),
which has no repeated prime factors (being irreducible) and x2m + x21 + ...x2m−1 is irreducible in A[xn].
Thus question 6.4.H helps us conclude that A[xm]/(x2m − f) = k[x1, ..., xn]/(x21 + ...+ x2m) is normal.

3. We will use 6.4.J to do reduce it to the case of part (b). Question 6.4.J states that all quadratic
form in n variable can, under change of coordinates, be expressed as a sum of at most n squares
where the elements in the squares are linearly independent. Applying this, we see that wz − xy =
((w + z)/2)2 + (i(w − z)/2)2 + (i(x + y)/2)2 + ((x − y)/2)2, and hence by the previous part of this
problem, we see that k[w, x, y, z]/(wz − xy) is normal.

Question 5.

Given x a homogeneous element in S+, we define a map D(f(x)) → D(x) by p 7→ f−1(p). This
makes sense because if p is generated by homogeneous elements {ri}i∈I , then f−1(p) is generated by the
homogeneous elements {f−1(ri)}i∈I . The map of schemes corresponding to this is the map Spec(((S•)x)0)→
Spec(((R•)f(x))0). Thus we have construct maps πj : D(f(xj)) → ProjS•. We want to show that these
morphisms glue. Given any fixed xi, xj such that D(f(xi)) and D(f(xj)) intersect, we consider the sheafs
maps πi|Spec(((S•)xixj

)0) and πj |Spec(((S•)xixj
)0). We see that for i this corresponds to the restriction of

πi to D(xj/xi) and at j this corresponds to the restriction of πj to D(xi/xj) (corresponding to sections
(((s•)xi

)0)xj/xi
and (((s•)xj

)0)xi/xj
). However, we see that the image of this morphism of sheaves is

(((R•)f (xi))0)f(xj)/f(xi) under πi and (((R•)f (xj))0)f(xi)/f(xj), but these two rings are glued together in
Proj(R•), and hence we see that πi and πj agree on the intersections. Thus we have defined a map
Proj(R•)− V (f(S+))→ Proj(S•).

Question 6.

Suppose S• is a finitely generated ring which is generated in degree 1, then we let a1, ..., am ∈ S1 be the
generators. Now as a1, ..., am generates S•, we see that Sn consists of finite sums of elements of the form
cai11 ...a

im
m where c ∈ S0 and i1 + ...+ im = n for all n. Thus fixing a n now, we see that Snj for any integer j

consists of finite sums of elements of the form ai11 ...a
im
m where i1+ ...+im = nj, but ai11 ...a

im
m can be expressed

as products ai11 ...a
im
m = (a

(i1)1
1 ...a

(im)1
m )(a

(i1)2
1 ...a

(im)2
m )...(a

(i1)j
1 ...a

(im)j
m ) where (i1)k + ... + (im)k = n for all

k ∈ {1, ..., j}. Thus we see that Sn• = ⊕∞j=0Snj is generated in Sn, and hence Sn• is also generated in degree
1.
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Question 7.

If S• and R• are the same finitely generated graded rings except in a finite number of nonzero degrees,
i.e. if Sn• ∼= Rn• for all but a finite amount of integers n, and we pick n0 to be the largest of the n such that
they are not isomorphic. Then by question 7.4.D, which states ProjS• ∼= ProjSn•, we see that for n > n0,
ProjS• ∼= ProjSn• ∼= ProjRn• ∼= ProjR•.

3


