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Question 1.

We will proceed by showing that any prime ideal in a ring R (that is not the zero ring) contains at least
one minimal prime ideal. Given any prime ideal p ⊂ R, we let S be the set of prime ideals in R contained in
p. The set S is not empty as p ∈ S. Now consider any chain of primes ... ⊂ pi ⊂ pi+1 ⊂ ... in S, we see that
∩ipi is again a prime ideal (intersection of chain of prime ideals is a prime ideal), and it is the lower bound
of the chain. Thus every chain in S has a lower bound in S, so Zorn’s lemma tells us that there is at least
one minimal element in S, so p contains at least one minimal prime ideal.

Now suppose SpecA is irreducible, then we know by the argument above that there is at least one minimal
prime ideal. We will show that there is exactly one. Suppose {pi}i∈I are the set of all minimal prime ideals
in A, where I is some indexing set, and suppose I can be expressed as a union of non-empty J and K where
J ∩ K is empty. Then the two sets D(∪j∈Jpj) and D(∪k∈Kpk) are non-empty, open, and disjoint (as all
prime ideals contain at least one minimal prime ideal). This shows that SpecA is reducible, a contradiction.
Thus I cannot be expressed as a union of non-empty J and K where J ∩K is empty, which means I must
have only one element (I is not empty). Therefore if SpecA is irreducible, there is exactly one minimal prime
ideal.

On the other hand, suppose there is exactly one minimal prime ideal p0, then the first paragraph imples
that all prime ideal contains p0. Thus all non-empty basis open in SpecA contains p0, so any two non-empty
open sets have non-empty intersection, which means that SpecA is irreducible.

Question 2.

The prime ideals in the ring R/I = k[x, y]/(xy) correspond to prime ideals in k[x, y] that contain (xy),
which are prime ideals in k[x, y] containing x or y. Now the prime ideals containing x correspond to
primes in k[x, y]/(x) ∼= k[y] and similarly prime ideals containing y correspond to primes in k[x, y]/(y) ∼=
k[x]. The prime ideal containing both x and y (and hence also xy) is the maximal ideal (x, y). Thus
Spec k[x, y]/(xy) ∼= Spec k[x] ∪(0,0) Spec k[y] where the two ”lines” are identified at (x, y). The minimal

prime ideals in k[x, y]/(xy) can be found as follows: if a prime p contains x, then its image in k[x, y]/(x) ∼= k[y]
contains the unique minimal prime ideal (0) ⊂ k[y], which, under the isomorphism, is (x) ⊂ k[x, y]. Similarly,
if a minimal prime p contains y, then its image in k[x, y]/(y) ∼= k[x] contains the unique minimal prime ideal
(0) ⊂ k[x], which, under the isomorphism, is (y) ⊂ k[x, y]. Thus there are precisely two minimal prime ideals
in k[x, y]/(xy): (x) and (y).

Question 3.

Consider the ring given in the previous exercise: A = k[x, y]/(xy). Spec A is reducible, because the two
open sets D(x) = Spec (k[x, y]/(xy))x ∼= Spec k[x]x and D(y) = Spec (k[x, y]/(xy))y ∼= Spec k[y]y are
disjoint non-empty open subsets of Spec A (their union is not the whole Spec A though).

On the other hand, suppose Spec A = X
∐
Y where X and Y are disjoint non-empty closed subset. Note

that in Spec A, {(x)} = V ((x)) and {(y)} = V ((y)), where V (x)∪V (y) = Spec A and V (x)∩V (y) = (x, y).
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Thus if (x), (y) are both in X, then Y is empty, a contradiction. On the other hand, if (x) ∈ X and (y) ∈ Y ,
then X,Y are not disjoint, a contradiction. Thus Spec A is connected.

Question 4.

Suppose A is Noetherian. First note that connected components are closed (this is true in any topological
space) because for any connected set, its closure is also connected. Let A = ∪i∈ICi where Ci are connected
components and I is an indexing set. By Proposition 4.6.6 proved in Vakil, every connected components
(since they are closed sets) can be uniquely expressed as a finite union Ci = Z1i ∪ ... ∪ Zni of irreducible
closed subsets, non contained in any other. Now as the connected components are disjoint, we see that Zij is
not contained in Zkl for all j 6= l. Thus these Zij are not contained in any larger irreducible sets, and hence
they are precisely the irreducible components. Thus connected components are unions of the irreducible
components.

Now apply again Proposition 4.6.6 in Vakil to the Noetherian topological space Spec A, we see that it
can be uniquely expressed as a finite union Z1 ∪ ... ∪ Zn of irreducible closed subsets, non contained in any
other. Now as irreducible sets are automatically connected, we see that the number of connected components
cannot be more than n, and hence is finite. Since connected components are disjoint closed sets that cover
the entire topological space SpecA, finiteness of the number of connected components implies that every
connected component is both open and closed. On the other hand, if a set S is open and closed, it cannot be
properly contained in any connected component. Therefore S must be the unions of connected components
of SpecA.

Question 5.

Suppose A is a Noetherian ring and M is a finitely generated A-module, then we will show that M is a
Noetherian module. First of all, if 0 → M ′ → M → M ′′ → 0 is exact, then M is Noetherian if and only if
M ′ and M ′′ are Noetherian (4.6.V in Vakil). Since M is finitely generated A-module, we let S = {f1, ..., fn}
be the set of generators of M . Then we know that F (S), the free module generated by the set S, satisfies
the property that F (S)→M by mapping fi 7→ fi is a module homomorphism onto M . Now as F (S) ∼= A⊕n

and A⊕n is a Noetherian A-module (4.6.W in Vakil), we see that we have an exact sequence

0→ ker φ→ A⊕n
φ−→M → 0

where the middle term A⊕n is Noetherian. Thus M is a Noetherian A-module.

Question 6.

I was unable to come up with a proof. Fix n, I was thinking that since the functor sends a ring R to
rank 1 free submodules in Rn+1, it kind of resembles the construction of projective space of Rn+1, which
are lines through origin. So I tried to let X = ProjZ[x0, ..., xn], so then for any rank 1 free submodules in
Rn+1 generated by (r0, ..., rn), consider a ring homomorphism φ : Z[x0, ..., xn] → R by mapping 1 7→ 1 and
xi 7→ ri, so a prime p ∈ SpecR is mapped to a prime φ−1(p) in Z[x0, ..., xn] which is homogeneous. So we
have a map SpecR → ProjZ[x0, ..., xn] as a topological space. However, I have not showed that this is a
bijection of sets

{ free rank 1 submodule L of Rn+1 such that there is L’ with L⊕ L′ = Rn+1} ↔ Hom(SpecR,X)

and I did not even show that the thing I though about gave a morphism of schemes. Thus I do not have any
proof, just some ideas.

Question 7.
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(a) We will construct an isomorphism of schemes Spec A1

∐
Spec A2

∐
...

∐
Spec An → Spec A,

where A = A1×A2× ...×An, thereby showing that a disjoint union of a finite number of affine schemes is an
affine scheme. First of all we note that all prime ideal of A are of the form A1× ...×Ai−1×Pi×Ai+1× ...×An
where Pi is a prime in Ai. We define φ : Spec A1

∐
Spec A2

∐
...
∐

Spec An → Spec A by mapping pi 7→
A1× ...×Ai−1×pi×Ai+1× ...×An. We first check that this φ is a homeomorphism of the topological space.
On each of the SpecAi, the map φ maps D(ai) bijectively onto D(fi) where fi = (0, ..., 0, ai, 0, ..., 0). This
shows that φ is not only a continuous bijection, but actually an open mapping, and hence a homeomorphism.

We will now construct a morphism of structure sheaves of rings (on a base), and show that it is an
isomorphism. Note first that if a base element D(r) ⊂ SpecA is such that more than 1 component of
r are non-zero, then D(r) = ∅, so we can take the base of SpecA to be D(r) where r is of the form
(0, ..., 0, ri, 0, ..., 0). Now we define ψ : OSpecA → φ∗O Spec A1

∐
...

∐
Spec An

by letting

ψ(D(r)): OSpecA(D(r)) > φ∗O Spec A1
∐
...

∐
Spec An

(D(r))=O Spec A1
∐
...

∐
Spec An

(φ−1D(r))

A(0,...,0,ri,0,...,0)

=
∨

(Ai)ri

=
∨

be the map A(0,...,0,ri,0,...,0) → (Ai)ri sending (a1, a2, ..., ai, ..., an)/(0, ..., 0, (ri)
k, 0, ...0) 7→ ai/(ri)

k. This
is an isomorphism which commutes with restriction maps, and so ψ is an isomorphism of structure sheaf.
Therefore there is an isomorphism of schemes Spec A1

∐
Spec A2

∐
...

∐
Spec An → Spec A, and hence

a finite disjoint union of affine schemes is again affine.

(b) Infinite disjoint union of affine schemes is never an affine scheme, as affine schemes are quasi-compact.
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