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Question 1.

(a) The projection map ¢ : B — B/I induces a bijection between the set Spec B/I and the prime ideals
in B that contains I (this was proved in the last homework). However, the set of prime ideals in B containing
I is by definition precisely the set V' (I), thus we see that Spec B/I is naturally a closed subset of Spec B.

If S = {1, f,f?, ..}, then the inclusion ¥ : B — S~!B induces a bijection between Spec S~!B and the
prime ideals in B not intersecting S. However, the prime ideals in B not intersecting S is precisely the set
{p €Spec B: f ¢ S} = D(f), so Spec S™!B is naturally an open subset of Spec B.

However, when S is arbitrary, then SpecS~!B need not be open or closed. An example is SpecC[z, y] (z,9)
This, when considered as a subset of SpecB, is neither closed nor open. To show this, suppose SpecC|z, y](4.y)
is closed, then it is equal to V(W) for some W C C[z,y]. However, as SpecClxz,y](,,,) consists of prime
ideals contained in (z,y), we see that (0) € SpecC|z, y](y ), and hence W C (0), which means that W = {0},
but this can not be right because then V(W) = SpecClz, y] # SpecClz, y](z,y), and thus SpecClz, y](z,,) is
not closed. On the other hand, suppose it is open, then it is equal to some D(S) = {p € SpecC[z,y] :
S is not contained in p}. However, as (x,y) is maximal, if there is some S not contained in (x,y), then
S + (z,y) is another ideal properly containing (z,y), contradicting the maximality. Thus no such S exists,
and hence SpecC[z,y|(,,) is not open. Thus SpecClz, y](, ) is neither open nor closed.

(b) The Zariski topology on Spec B/I states that the closed sets are of the form V'(S) for some S C B/I.
V(S) corresponds, under the bijection induced by ¢ : B — B/I, to the set {p € Spec B : I C p,¢~1(S) C
p} = V({I)NV(p~(S)) = SpecB/I NV (¢p~1(S)). Thus the Zariski topology on SpecB/I is the subspace
topology induced by inclusion in SpecB.

Now we consider S~!B. The Zariski topology on SpecS~! B defines closed sets to be of the form V(W)
for some W C S~'B. V(W) corresponds, under the bijection induced by ¢ : B — S~!B, to the set
{p€Spec B:pNS=0,6"1(W) C p} =SpecS BNV (¢~1(W)). Thus the Zariski topology on SpecS—!B
is the subspace topology induced by inclusion in SpecB.

Question 2.

Suppose A is an integral domain, then given any two non-empty open sets, we want to show that they
have nonempty intersection. Now as {D(f)}rca form a base for the topological space Spec A, we see that
any two open sets U,V can be written as U = U; D(f;) and V = U;D(g;). Since A is an integral domain, (0)
is prime, and as D(f) = {p € SpecA : f ¢ p}, we see that (0) € D(f) for all f # 0 (if f is zero, then the set
D(f) is empty, so it does not really matter). Thus we see that (0)inU = U;D(f;) and (0) € V = U,;D(g,),
and thus (0) € U NV, which shows that the intersection is nonempty. Thus we have shown that if A is an
integral domain, SpecA is irreducible.

Question 3.

Suppose that p € SpecA is maximal, then we see that V(p) = {p’ € SpecA : p C p'} = {p} by maximality.



Thus {p} is closed. On the other hand, suppose {p} is a closed point, then by the definition of the Zariski
topology, we see that {p} = V(I) for some ideal I. Since we are assuming the ring A has 1, every ideal is
contained in a maximal ideal, so let p’ D I be such maximal ideal. Then as {p} = V(I), we see that p’ = p
and hence p is maximal.

Question 4.

(a) Suppose Spec A = U;U;, then since {D(f)} yca form a base, we see that Spec A = U;U; = U; ;D(f; ;)
where U; = U;D(f;). Then since Spec A = U; ; D(f; ;), we see that (f; ;) = A, and so 1 € (f; ;). This means
that there exists some a; ;, all but finitely many 0 (denote the (i, j) where a; ; is not zero by S’), such that
1 =3, ,aijfi;, but this means that (f;;)s = A, so we see that U; jes/D(fi ;). Since S is finite, we let
I’ be the i such that 4,7 is in S, then I’ is finite, and we see that Spec A = U;cU;, and thus SpecA is
quasicompact.

(b) Consider A = k[x1,29,23,...] and m = (21,22,23,...) C A. Then we will show that the set
V(m)¢ = {p € SpecA : p is not contained in m} is not compact. First we see that V(m)® = {p € SpecA :
m is not contained in p} = U;enD(x;). However, let T be any finite subset of the natural numbers N, then
we see that U;erD(x;) does not contain the prime (x;);es for any J D I. But (z;)ics is in V(m)¢, so we see
that the cover V(m)¢ = U;enD(z;) does not have a finite subcover. Thus it is not quasicompact. This show
that SpecA can have nonquasicompact open subsets.

Question 5.

Suppose {p} is a specialization of {¢}, then {p} € {q}. We see by definition of closure that
{a} = Nyevs)V(5)

where the intersection is taken over all S such that V(S) contains ¢. Now if {p} € {¢}, then for all S such
that S C ¢, we have S C p. However, ¢ C g, so we see that ¢ C p. On the other hand, if ¢ C p, then it
follows trivially that for all S such that S C ¢, we have S C p, and hence {p} € {q}.

Using the above statement, we see that if {g} € V(p), then p C q, so {q} € {p}, while if {g} € {p}, then
p C q and so {¢} € V(p). Thus V(p) = {p}.

Question 6.

(a) Define a map ¢ : k[w, x,y, 2] — k[a, b] by taking w +— b®, x — ab?, y — a?b, and z + a>. We want to
show that I = (wz—zy, wy—x2, vz —y?) is equal to ker(¢). The inclusion I C ker(¢) is clear by just plugging
in values. We will show that I D ker(¢). We will proceed by constructing basis for kjw,z,y, z] as a vector
space over k. For degree n, we see that the polynomials consisting of element of only degree n is a (""'ﬁ*)—
dimensional vector space, with the ”conventional” basis B,, = {w™z%2y?32% : a; + a1 +a3+ags =n}. Welet
Sp = {w™z®2y®32% : as +az <1 and a1 + a1 + a3 + ag = n}. Then we see that all elements of B,, — S,, can
be written as a sum of an element from S and an element from I. (Justification: for any w x*2y%s 2% such
that as + a3 > 2, we can reduce the number as + a3 by writing it as w? x®2y3 294 = w41 pe2 =Ly =101 (gy —
’U)Z) + wa1+1xa271yagflza4+1 or walxazya32a4 — walxa272ya32a4 (1’2 _ wy) + wa1+1xa272ya3+12a4+1 or
WM 2y® 20 = g2y =20 (y2 _ pz) 4 hgi2tlyes=2;a1+1 depending on what the ai,ay actually
are. Thus we can reduce the sum a; + ao in each step, which justifies the statement that all elements of
B, — S, can be written as a sum of an element from S,, and an element from I.) Thus we see that we can
pick a basis for degree n polynomials consisting of elements in S;, for m < n and elements in I. Note that
there are 3n + 1 elements in S,,, and they map bijectively under ¢ to elements {a™ 0" : r1 + 7o = 3n}. Now
suppose p(w, z,y, z) is a degree n polynomial in k[w, x,y, z] such that p(w, x,y, 2) € ker¢, then we first write
p(z) = s(x) 4+ i(x) where s(z) are described as above (sum of elements in S, for m < n), and i(z) C I, then



we see that ¢(p(x)) = ¢(s(x)) = 0. However, this cannot be possible if s(x) # 0, as we have just stated
that elements of S,, map bijectively under ¢ to elements {a"d" : 11 + r2 = 3n}, and thus by counting the
degrees in k[a,b] we see that s(x) = 0, and hence p(z) C I. Now by the first isomorphism theorem, we see
that k[w, z,y, z]/I = klw,z,y, 2]/ Ker¢ = Im¢ where Img is the subring generated by monomials of degree
divisible by 3. Thus k[w,z,y, 2]/I is an integral domain, and hence I is prime and Speck[w,x,y, z]/I is
irreducible by Question 2 above.

(b) The generators of the ideal of part (a) can be written as the equations ensuring that

rank (w t y><1
T Yy z

since for the above matrix to have rank less than or equal to one means that all 2 X 2 minor of this matrix
is zero, which is the condition in I. Now we consider an ideal I in k[xg, 1, ..., 2,] such that the generators
are the equations ensuring that the 2 x n matrix satisfies

T T T e Tp—
rank 0 1 2 n—1 <1
xr1 X2 I3 ... In

then we can again apply similar strategy to show that Speck[zq, 21, ..., £,]/I is irreducible by showing that I is
prime. We will map ¢ : k[zg, 21, ..., 5] — k[a, b] by mapping x; — a’b"~*. Then we see that ker¢ O I as any
2 X 2 minor, i.e. T, T, —Ti, +1Ti,—1, is mapped to a1 b gl2pn Tz — ghiFlpn—ii—lgla=lpn—=iatl — () To show
that ker¢ C I, we again define S,,, = {xg°x{*...2%" : a1 +as+...+am—1 <1, and ap+ai+as+...4+a, = m},
then we see that polynomials of degree m can be written as a sum of an element in I and elements in S for
I < m. Again, we see that S,, is mapped bijectively by ¢ onto the set {a™b" : r; + ro = mn}, and thus we
see that (by a similar argument of counting degrees in kla,b]) I = ker¢, and hence by the first isomorphism
theorem, we see that k[xg,x1,...,xn]/I = k[zo, z1, ..., xp]/Keré = Im¢ where I'm¢ is the subring generated
by monomials of degree divisible by n. Thus k[xg, 21, ...,2,]/I is an integral domain, and hence I is prime
and Speck[zg, 21, ...,x,]/I is irreducible by Question 2 above.



