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Question 1.

(a) The projection map φ : B → B/I induces a bijection between the set Spec B/I and the prime ideals
in B that contains I (this was proved in the last homework). However, the set of prime ideals in B containing
I is by definition precisely the set V (I), thus we see that Spec B/I is naturally a closed subset of Spec B.

If S = {1, f, f2, ...}, then the inclusion ψ : B → S−1B induces a bijection between Spec S−1B and the
prime ideals in B not intersecting S. However, the prime ideals in B not intersecting S is precisely the set
{p ∈ Spec B : f /∈ S} = D(f), so Spec S−1B is naturally an open subset of Spec B.

However, when S is arbitrary, then SpecS−1B need not be open or closed. An example is SpecC[x, y](x,y).
This, when considered as a subset of SpecB, is neither closed nor open. To show this, suppose SpecC[x, y](x,y)
is closed, then it is equal to V (W ) for some W ⊂ C[x, y]. However, as SpecC[x, y](x,y) consists of prime
ideals contained in (x, y), we see that (0) ∈ SpecC[x, y](x,y), and hence W ⊂ (0), which means that W = {0},
but this can not be right because then V (W ) = SpecC[x, y] 6= SpecC[x, y](x,y), and thus SpecC[x, y](x,y) is
not closed. On the other hand, suppose it is open, then it is equal to some D(S) = {p ∈ SpecC[x, y] :
S is not contained in p}. However, as (x, y) is maximal, if there is some S not contained in (x, y), then
S + (x, y) is another ideal properly containing (x, y), contradicting the maximality. Thus no such S exists,
and hence SpecC[x, y](x,y) is not open. Thus SpecC[x, y](x,y) is neither open nor closed.

(b) The Zariski topology on Spec B/I states that the closed sets are of the form V (S) for some S ⊂ B/I.
V (S) corresponds, under the bijection induced by φ : B → B/I, to the set {p ∈ Spec B : I ⊂ p, φ−1(S) ⊂
p} = V (I) ∩ V (φ−1(S)) = SpecB/I ∩ V (φ−1(S)). Thus the Zariski topology on SpecB/I is the subspace
topology induced by inclusion in SpecB.

Now we consider S−1B. The Zariski topology on SpecS−1B defines closed sets to be of the form V (W )
for some W ⊂ S−1B. V (W ) corresponds, under the bijection induced by φ : B → S−1B, to the set
{p ∈ Spec B : p∩ S = ∅, φ−1(W ) ⊂ p} = SpecS−1B ∩ V (φ−1(W )). Thus the Zariski topology on SpecS−1B
is the subspace topology induced by inclusion in SpecB.

Question 2.

Suppose A is an integral domain, then given any two non-empty open sets, we want to show that they
have nonempty intersection. Now as {D(f)}f∈A form a base for the topological space Spec A, we see that
any two open sets U, V can be written as U = ∪iD(fi) and V = ∪jD(gj). Since A is an integral domain, (0)
is prime, and as D(f) = {p ∈ SpecA : f /∈ p}, we see that (0) ∈ D(f) for all f 6= 0 (if f is zero, then the set
D(f) is empty, so it does not really matter). Thus we see that (0)inU = ∪iD(fi) and (0) ∈ V = ∪jD(gj),
and thus (0) ∈ U ∩ V , which shows that the intersection is nonempty. Thus we have shown that if A is an
integral domain, SpecA is irreducible.

Question 3.

Suppose that p ∈ SpecA is maximal, then we see that V (p) = {p′ ∈ SpecA : p ⊂ p′} = {p} by maximality.
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Thus {p} is closed. On the other hand, suppose {p} is a closed point, then by the definition of the Zariski
topology, we see that {p} = V (I) for some ideal I. Since we are assuming the ring A has 1, every ideal is
contained in a maximal ideal, so let p′ ⊃ I be such maximal ideal. Then as {p} = V (I), we see that p′ = p
and hence p is maximal.

Question 4.

(a) Suppose Spec A = ∪iUi, then since {D(f)}f∈A form a base, we see that Spec A = ∪iUi = ∪i,jD(fi,j)
where Ui = ∪jD(fj). Then since Spec A = ∪i,jD(fi,j), we see that (fi,j) = A, and so 1 ∈ (fi,j). This means
that there exists some ai,j , all but finitely many 0 (denote the (i, j) where ai,j is not zero by S′), such that
1 =

∑
i,j ai,jfi,j , but this means that (fi,j)S′ = A, so we see that ∪i,j∈S′D(fi,j). Since S′ is finite, we let

I ′ be the i such that i, j is in S′, then I ′ is finite, and we see that Spec A = ∪i∈I′Ui, and thus SpecA is
quasicompact.

(b) Consider A = k[x1, x2, x3, ...] and m = (x1, x2, x3, ...) ⊂ A. Then we will show that the set
V (m)c = {p ∈ SpecA : p is not contained in m} is not compact. First we see that V (m)c = {p ∈ SpecA :
m is not contained in p} = ∪i∈ND(xi). However, let I be any finite subset of the natural numbers N, then
we see that ∪i∈ID(xi) does not contain the prime (xi)i∈J for any J ⊃ I. But (xi)i∈J is in V (m)c, so we see
that the cover V (m)c = ∪i∈ND(xi) does not have a finite subcover. Thus it is not quasicompact. This show
that SpecA can have nonquasicompact open subsets.

Question 5.

Suppose {p} is a specialization of {q}, then {p} ∈ {q}. We see by definition of closure that

{q} = ∩q∈V (S)V (S)

where the intersection is taken over all S such that V (S) contains q. Now if {p} ∈ {q}, then for all S such
that S ⊂ q, we have S ⊂ p. However, q ⊂ q, so we see that q ⊂ p. On the other hand, if q ⊂ p, then it
follows trivially that for all S such that S ⊂ q, we have S ⊂ p, and hence {p} ∈ {q}.

Using the above statement, we see that if {q} ∈ V (p), then p ⊂ q, so {q} ∈ {p}, while if {q} ∈ {p}, then
p ⊂ q and so {q} ∈ V (p). Thus V (p) = {p}.

Question 6.

(a) Define a map φ : k[w, x, y, z]→ k[a, b] by taking w 7→ b3, x 7→ ab2, y 7→ a2b, and z 7→ a3. We want to
show that I = (wz−xy,wy−x2, xz−y2) is equal to ker(φ). The inclusion I ⊂ ker(φ) is clear by just plugging
in values. We will show that I ⊃ ker(φ). We will proceed by constructing basis for k[w, x, y, z] as a vector
space over k. For degree n, we see that the polynomials consisting of element of only degree n is a

(
n+4−1

n

)
-

dimensional vector space, with the ”conventional” basis Bn = {wa1xa2ya3za4 : a1 +a1 +a3 +a4 = n}. We let
Sn = {wa1xa2ya3za4 : a2 + a3 ≤ 1 and a1 + a1 + a3 + a4 = n}. Then we see that all elements of Bn−Sn can
be written as a sum of an element from S and an element from I. (Justification: for any wa1xa2ya3za4 such
that a2 +a3 ≥ 2, we can reduce the number a2 +a3 by writing it as wa1xa2ya3za4 = wa1xa2−1ya3−1za4(xy−
wz) + wa1+1xa2−1ya3−1za4+1 or wa1xa2ya3za4 = wa1xa2−2ya3za4(x2 − wy) + wa1+1xa2−2ya3+1za4+1 or
wa1xa2ya3za4 = wa1xa2ya3−2za4(y2 − xz) + wa1xa2+1ya3−2za4+1 depending on what the a1, a2 actually
are. Thus we can reduce the sum a1 + a2 in each step, which justifies the statement that all elements of
Bn − Sn can be written as a sum of an element from Sn and an element from I.) Thus we see that we can
pick a basis for degree n polynomials consisting of elements in Sm for m ≤ n and elements in I. Note that
there are 3n+ 1 elements in Sn, and they map bijectively under φ to elements {ar1br2 : r1 + r2 = 3n}. Now
suppose p(w, x, y, z) is a degree n polynomial in k[w, x, y, z] such that p(w, x, y, z) ∈ kerφ, then we first write
p(x) = s(x) + i(x) where s(x) are described as above (sum of elements in Sm for m ≤ n), and i(x) ⊂ I, then
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we see that φ(p(x)) = φ(s(x)) = 0. However, this cannot be possible if s(x) 6= 0, as we have just stated
that elements of Sn map bijectively under φ to elements {ar1br2 : r1 + r2 = 3n}, and thus by counting the
degrees in k[a, b] we see that s(x) = 0, and hence p(x) ⊂ I. Now by the first isomorphism theorem, we see
that k[w, x, y, z]/I = k[w, x, y, z]/Kerφ ∼= Imφ where Imφ is the subring generated by monomials of degree
divisible by 3. Thus k[w, x, y, z]/I is an integral domain, and hence I is prime and Speck[w, x, y, z]/I is
irreducible by Question 2 above.

(b) The generators of the ideal of part (a) can be written as the equations ensuring that

rank

(
w x y
x y z

)
≤ 1

since for the above matrix to have rank less than or equal to one means that all 2× 2 minor of this matrix
is zero, which is the condition in I. Now we consider an ideal I in k[x0, x1, ..., xn] such that the generators
are the equations ensuring that the 2× n matrix satisfies

rank

(
x0 x1 x2 ... xn−1
x1 x2 x3 ... xn

)
≤ 1

then we can again apply similar strategy to show that Speck[x0, x1, ..., xn]/I is irreducible by showing that I is
prime. We will map φ : k[x0, x1, ..., xn]→ k[a, b] by mapping xi → aibn−i. Then we see that kerφ ⊃ I as any
2×2 minor, i.e. xi1xi2−xi1+1xi2−1, is mapped to ai1bn−i1ai2bn−i2−ai1+1bn−i1−1ai2−1bn−i2+1 = 0. To show
that kerφ ⊂ I, we again define Sm = {xa0

0 x
a1
1 ...x

am
m : a1+a2+...+am−1 ≤ 1, and a0+a1+a2+...+am = m},

then we see that polynomials of degree m can be written as a sum of an element in I and elements in Sl for
l ≤ m. Again, we see that Sm is mapped bijectively by φ onto the set {ar1br2 : r1 + r2 = mn}, and thus we
see that (by a similar argument of counting degrees in k[a, b]) I = kerφ, and hence by the first isomorphism
theorem, we see that k[x0, x1, ..., xn]/I = k[x0, x1, ..., xn]/Kerφ ∼= Imφ where Imφ is the subring generated
by monomials of degree divisible by n. Thus k[x0, x1, ..., xn]/I is an integral domain, and hence I is prime
and Speck[x0, x1, ..., xn]/I is irreducible by Question 2 above.
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