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Question 1.

(a) We will verify that a morphism of sheaves is determined by the induced morphism of sheaves on the
base. We let ¢1,¢9 : .F — 4 be two morphism of sheaves, and denote ¢1, ¢ : F' — G to be the induced
morphism of sheaves on the base. Then the claim that we wish to verify is the same as saying that if for
any given open U = J, B; C X where B; are base elements, and suppose ¢1(B;) = ¢2(B;) for all i, then
1 = 2.

To show this, we first note that given any base element B’, the induced morphism ¢;(B’) is defined
to be ¢1(B’) (and similarly for ¢2). Given any open U = |J; B; C X (where B; are base elements) such
that ¢1(B;) = ¢o(B;) for all i, we will treat these morphisms as elements of the ”Sheaf Hom”. First of all,
¢1(B;) = ¢1(Bi) € Hom(F,9)(B;), and as we have constructed in the last homework, ¢1(B;) = ¢1(B;) =
resy. g, (¢1(U)) where ¢1(U) € Hom(F,9)(U). Thus as ¢1(B;) = resy.p, (¢1(U)) for all i (and similarly for
¢2), we have

resu,p, (61(U)) = ¢1(B;) = ¢2(Bi) = resu,, (¢2(UV))

So as ”Sheaf Hom” is a sheaf, by the identity axiom on the Sheaf Hom, we see that ¢1(U) = ¢2(U), and as
U is arbitrary, we conclude that ¢ = ¢o.

(b) Given F, G two sheaves on the base, we can construct, as described in this section, sheaves F,9 on
X. Given ¢ : F — G a morphism of sheaves on the base and any open U C X, we want to define a map
o(U) : F(U) - 4(U). We will do so by considering compatible stalks. By definition

FU)={(fp € Fp)pev : for all p € U, there exists B with p C B C U, s € F(B), with s, = f, for all ¢ € B}

However, given any p we see that ¢ : F — G induces a morphism of stalks ap : F, = Gp. So first of all we
consider a set

S = {(5p(fp) € Gp)peU : (fp) € Q(U)}

We want to show that this is contained in 4 (U). To see this, given p € U there exists B with p € B C
U,s € F(B) with s, = f, for all ¢ € B. Then given any p € U, we take the same p € B C U, and consider
¢(B)(s) € G(B), we see by the commutative square (as described in Section 3.4.3.1)

¢(B)

F(B) ——— G(B)

| |

HFqM I1 <.

qeB qeB

that if s, = f, for all ¢ € B, then

A(B)(5)q = 0q(5q) = &4(fq)



Thus ¢(B)(s) satisfies ¢(B)(s)q = ¢,(f,) for all ¢ € B, and hence we sece that S is a subset of ¢(U), and

thus by sending f, — ¢,(fp), we have constructed a map ¢(U) : F(U) — ¢(U) for an arbitrary U, and
hence we have a data of maps ¢ : F — 4. The tautological restriction map commutes with the data of maps
that we have just contructed, and thus we conclude that ¢ : F — ¢ as defined is a morphism of induced
sheaves, and a morphism of sheaves on the base gives a morphism of the induced sheaves.

Question 2.

Since X = |J,; Ui, then we define B, ;, j € J; where J; is an indexing set depending on ¢, be open sets
contained in U;, then {B; ;} form a base of X. Now for any B; ;, we can choose k (depending on i, j) such
that B; ; C U, and F(B; ;) = Z,(B;,;) (potentially using the axiom of choice?). Then given any By C By
with the corresponding k1, k2, we define the restriction map by resp, B, = @k, ©T€SB,,B, Where the second
restriction map is the restriction in %, (the restriction of sheaves will be italicize, while the restriction of
sheaves on base will not be). We will check that this restriction map gives a presheaf on base. Suppose
B;1 C By C Bs with corresponding k1, k2, k3, then

IeSB,,B; ©T€SB3, B, = ¢k2k1 OTeSB,,By © ¢k3k2 OT€SB3,B,y
= ¢kf2k1 © d)kskz OTeSB,,B; ©T€SB3,B;

= Qkyky OT€SBy, B, = €SBy, B,

where the second equality comes from ¢, being an isomorphism of sheaves, so it commutes with restriction
maps. Thus we have a presheaf on base.

We will check that this defines a sheaf on base. We will check base identity first. Given B = J; B;, with
corresponding k; for B; and k for B. Then if f,g € F(B) are such that resg g, f = resp p,g for all i, then
we see that ¢ri, oresp.p, f = ¢rr, o resp,p,;g for all 4, and thus resp p,f = resp,p,g for all i. Thus f =g
by the sheaf identity axiom on Z.

Next we check base gluability. Suppose B = |J; B;, with corresponding k; for B; and k for B. Suppose
we have f; € F/(B;) for all i such that resp, B,np,fi = resp, B,nB,f; (here we let k;; correspond to B; N
Bj), then we see that ¢, © resp, B,nB; fi = Okk:; © T€SB; B.nB; fir 80 Pkijk © Phiks; © €SB, BinB; fi =
Gkisk © Pkjki; © T€SB; BB, fi, and hence ¢y, o resp, B,nB; fi = Pk;k 0 Tesp, B.nB; fj- Therefore, we see
that resp, B,nB; © P,k fi = resp; B.nB; © Pk fj for all 4,7, and hence by the gluability of the sheaf .7,
we see that there is an element f € % (B) = F(B) such that resp p,f = ¢ fi for all i, but then
resp B, f = ik, oresp.B, f = Prk, © ;1 fi = fi for all i, so we see that f € F(B) is the element satisfying
the base gluability. Thus F' is base gluable, and we see that F' is a sheaf on base.

Finally, since we are given a sheaf on base, we can construct a % on X which is unique up to unique
isomorphism by Theorem 3.7.1 of Vakil. It also claims that F(B) = % (B), and thus we see that given
B C U, %#;(B) 2 F(B) > %#(B) = #|y,(B), thus # = Z|y,.

Question 3.

A(b = Spec Q[z]. Now as this is a Euclidean domain, all ideals are principal. All prime ideals are thus of
the form (f(x)) where f(x) is an irreducible polynomial. T was unable to classify all irreducible polynomials
over Q. The picture will look like C where any given ¢ € C will be identified with all its Galois conjugate.

Question 4.

Suppose p is a prime ideal, and suppose that it is not principal. Suppose on the contrary that for all
fsg € p, there is a common factor. Let f(z,y) be a polynomial of smallest degree (of z and y combined).



Now as p is not principal, we see that there is a g(x,y) that is not a multiple of f(x,y). But now f and ¢
have a common factor, so f(z,y) = fi(z,y)f2(x,y) where f; is a common factor of f and g. However, by
primality, we see that either f; or f5 is in p, which contradicts the fact that f(x,y) is of the smallest degree.
Thus the f(z,y),g(x,y) € p chosen here are such that f, g has no common factor.

Our choice of f, g here has no common factor in Clz, y| = C[z][y]. If f, when considered as a polynomial in
C(z)[y], becomes a unit, then f = x—a for some complex a (as f is of minimal degree). But thenif x —a € p,
then given any g(z,y) = rn()y" +rn_1(2)y" 1 +...4+ro(x), we see that 7, (a)y" +7r,_1(a)y" 1 +...4+19(a) € p,
so some y — b must be in p, and hence p = (z — a,y — b). Otherwise, we see that f,¢g have no common
factor in the Euclidean domain C(z)[y] by Gauss lemma applied to f. Then using the Eiclidean algorithm,
we see that there exist hi, ho € C(z)[y] such that fhy + ghs is a unit in C(x)[y], which is of the form h(z).
Thus fhy + ghy = h(z) We can clear the denominators of both sides, and we get fh; 4+ ghy = h'(z) where
now hy, hy € Clz,y] and h/(z) € Clz]. This gives h/'(x) C (f(z,y),g(x,y)) C p, and thus by primality some
(x —a) € p, and by a similar argument some (y — b) € p, and so p = (x — a,y — b). This concludes the
claim that the prime ideals of Clx, y] are of the form (z — a,y — b) for some complex a, b, or a principal ideal
(f(z,y)) generated by a irreducible polynomial f(x,y).

Question 5.

Let A be a ring, I C A an ideal, and ¢ : A — A/I be the projection map. Given any prime p €
Spec (A/I), we will first show that the map ¢ : Spec (A/I) — {p € Spec (A) : I C p} defined by
@' (p) = ¢~ 1(p) is a prime containing I. Given any a,b € A such that ab € ¢'(p), we see that ab € ¢~ 1(p),
thus ¢(ab) = ¢(a)p(b) € p, which means that ¢(a) or ¢(b) is in p. This shows that a or b is in ¢~1(p), so
#'(p) is a prime. It contains I because 0 € p and thus I = ¢=1(0) C ¢~ 1(p), and hence I C ¢'(p).

On the other hand, given a prime p C A containing I, we can consider the image of p under ¢, which
is ¢(p) = p/I. Now given (a + I),(b+ I) € A/I (where here I denote them by cosets), if (a + I)(b+ 1) =
(ab+ 1) € p/I, then we let ab+ I = p+ I for some p € p. We see that ab—p € I C p, so ab € p and thus a
or bis in p, and hence (a + I) or (b+ 1) isin p/I. Hence p/I is a prime ideal in A/I. Thus there is a map
¢" :{p € Spec (A): I Cp} — Spec (A/I).

Now ¢'0¢"(p) = ¢'(p/I) = ¢~ (p/I) = p and ¢" o ¢'(p) = ¢" (¢~ (p)) = (¢~ '(p)) = p as ¢ is surjective.
Given p; C po C A/I, it is clear that ¢'(p1) := ¢~ (p1) C ¢~ 1(p2) = ¢'(p2). Thus ¢’ is a inclusion preserving
bijection, with inverse ¢".

Question 6.

Let A be a ring and S a multiplicative set. Consider the map ¢ : A — S~!A by mapping a — a/1. We
see by a similar argument as the previous question that there is a map ¢’ : Spec (S7*A) — {p € Spec (A):
pNS = 0} by mapping p € Spec (S71A) to ¢~1(p) € {p € Spec (A) : pN S = P}. We will show that
¢'(p) NS = (). Suppose on the contrary that there is sg € ¢/'(p) NS, then ¢(sg) = s9/1 € p. Now as p is an
ideal, we see that (1/s0)(s0/1) = so/so = 1/1 is in p, and hence p is the whole S~1A, which contradicts the
fact that p is prime (hence proper).

On the other hand, we define a map ¢” : {p € Spec (A) :pNS =0} — Spec (S~1A). Given any prime
p € Spec (A) such that pN S =0, we let ¢”(p) be the subset p’ of S~ A consisting of elements of the form
po/so for some py € p. This set p’ is an ideal of S71A as

Po P1 _ PoS1 — Pi1So 0, P1 _ Pob1 /

b
=" ¢cyp and = Ep
S0 S1 S0S1 So S1 S0S1

It is prime because if ag/by and a1 /by are any two elements of S~ A such that (agay)/(bob1) € p’, then

apay

=0 g some pg € p,sg € S
bobl S0



and hence there is some s’ € S such that s'sgaga; = s'pobob1 € p, and as p NS = (), by the primality of p,
we see that ag or a1 is in p, thus ag/by or a; /by is in p’, and hence p’ is a prime ideal.

Now ¢’ o ¢"(p) = ¢'({a/b : a € p,b € S}) = ¢~ *({a/b : a € p,b € S}) = p, On the other hand, if
a/b€p e Spec(ST1A), thena/1 € p,soa € ¢'(p), and thus a/b € ¢ o¢'(p), while ¢”o¢’ (p) = ¢ o~ (p) = p,
and thus ¢’ is a bijection. Given p; C py C S7!A, it is clear that ¢'(p1) := ¢~ (p1) C ¢ 1 (p2) = ¢'(p2).
Thus ¢’ is a inclusion preserving bijection, with inverse ¢”.



