Math 256A Problem Set 10

Kuan-Ying Fang

December 2, 2011

Question 1.

For $n \ge 0$, a global section in $\Gamma(\mathbb{P}^1, \mathcal{O}(n))$ is a polynomial $f(x_{1/0}) \in k[x_{1/0}]$ and a polynomial $g(x_{0/1}) \in k[x_{0/1}]$ such that $f(1/x_{0/1})x_{0/1}^n = g(x_{0/1})$. This implies that $f(x_{1/0}) = a_n x_{1/0}^n + a_{n-1} x_{1/0}^{n-1} + \dots + a_1 x_{1/0} + a_0$ and $g(x_{0/1}) = a_n + a_{n-1} x_{0/1}^1 + \dots + a_1 x_{0/1}^{n-1} + a_0 x_{0/1}^n$. Thus we see that

dim $\Gamma(\mathbb{P}^1, \mathscr{O}(n)) = (n+1)$ for $n \ge 0$

On the other hand, for n < 0, we see that the transition function from $k[x_{1/0}] \to k[x_{0/1}]$ is multiplying by $x_{0/1}^n$ because for n < 0 it is the dual bundle of $\mathscr{O}(1)^{\otimes -n}$, and the transition function of $(\mathscr{O}(1)^{\otimes -n})^{\vee}$ is the inverse of the transition function of $\mathscr{O}(1)^{\otimes -n}$ by 14.1.C in Vakil. Now a global section in $\Gamma(\mathbb{P}^1, \mathscr{O}(n))$ is a polynomial $f(x_{1/0}) \in k[x_{1/0}]$ and a polynomial $g(x_{0/1}) \in k[x_{0/1}]$ such that $f(1/x_{0/1})x_{0/1}^n = g(x_{0/1})$. But because n < 0 is negative, we see that no such f and g can ever exist because the degree of $x_{0/1}$ in f will always be negative. Thus since no f and g can satisfy the condition, we conclute that

dim $\Gamma(\mathbb{P}^1, \mathcal{O}(n)) = 0$ for n < 0

Question 2.

If m or n (or both) is positive and $m \neq n$, then the previous exercise show that the dimension of the global sections are not equal, and hence $\mathscr{O}(n)$ is not isomorphic to $\mathscr{O}(m)$. The remaining case is when m and n are both negative and $m \neq n$. Suppose $\mathscr{O}(n) \cong \mathscr{O}(m)$, i.e. $\mathscr{O}(-n)^{\vee} \cong \mathscr{O}(-m)^{\vee}$, then $\mathscr{O}(-n) \cong \mathscr{O}(-n)^{\vee \vee} \cong \mathscr{O}(-m)^{\vee \vee} \cong \mathscr{O}(-m)$ (by 14.1.C in Vakil again) which contradicts the first part of this question. Thus we conclude that if $m \neq n$, then $\mathscr{O}(n)$ is not isomorphic to $\mathscr{O}(m)$.

Question 3.

Similar to the case of \mathbb{P}^1 , we see that a global section in $\Gamma(\mathbb{P}^m, \mathscr{O}_{\mathbb{P}^m}(n))$ is a homogeneous polynomial of degree n in m+1 variables. Thus we only need to find how many different ways can $x_1^{i_1} x_2^{i_2} \dots x_{m+1}^{i_{m+1}}$ be of degree n. This is the same as the combinatorics problem of putting n balls in m+1 boxes, and the combinatorial solution to this is $\binom{n+(m+1)-1}{n} = \binom{n+m}{n}$. Thus we see that dim $\Gamma(\mathbb{P}^m, \mathscr{O}_{\mathbb{P}^m}(n)) = \binom{n+m}{n}$.