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Question 1.

We will show that the functor
h:C — Fun(C, Set)

gives a bijection
hX’y : Homc (X, Y) — Hompqm(copﬁet)(h(X), h(Y))

for all X,Y eC.

Given any arbitrary X,Y € C and f € Home(X,Y), we let m be a natural transformation from hx
to hy defined as follows: Given any A € C, we let my : hx(A) — hy(A) by taking h — f o h where
h € Hom(A,X) = hx(A). Suppose g : A — A’, then we see that the diagram

hx(A) %hx(g) hX(A/) hog %hx(g) h
mAl/ mAIJ/ is given by mA\L mA,\L
hY(“DMhY(A/) fohogwfoh

and thus the diagram commutes.

On the other hand, given any natural transformation m € Hom pyn(cor set)(R(X), h(Y)), we consider the
map mx : Home(X,X) = Home(X,Y), and let f = mx (Id) where Id € Home (X, X) is the identity map.
Then mx (Id) € Home(X,Y).

The two paragraphs above show that we can obtain a C-morphism f € Hom¢(X,Y) from a natural
transformation m € Hompyp(cor,set)(R(X), h(Y)) and vice versa. It remains to show that these two con-
structions are ”inverses” of each other. Given any m € Hompyn(cor set)(R(X), h(Y')), the C-morphism we get
is mx(Id) : X — Y. From this m,(Id) we get a natural transformation n € Hom pyn(cor,set) (R(X), h(Y))
sending (for any given A € C and f; € hx(A)) f1 = mx(Id) o fi = ma(f1) where the last equality is true
because m is natural so the diagram commutes:

hae(4) XU 5 x Ido f, < XU
mA\L mXJ/ is given by mA$ mXJ/
b hy (f1) hy (f1)

y(A) < hy(X) mX(Id) Of1 < mx(.[d)

so n = m and we get back the original natural transformation m.

On the other hand, given any f € Home(X,Y), the natural transformation we get is f o (), the natural
transformation given by left composition by f. From this natural transformation, we get back the C-morphism
fo(Id)=f.

What this shows is that there is a bijection

hxy : Home(X,Y) — HOmFun(COP,Set)(h(X)? h(Y))



for all X,Y € C, so the association A — h4 defines a fully faithful functor
h:C — Fun(C, Set)

Question 2.

Let the k-algebra S be k[X]/(f1(X), f2(X), ..., fr(X)). We will show that hg = F by showing that given
a k-algebra g : k — R, there is a bijection (isomorphism of sets)

Hom(S,R) <+ {a € R™|f!(a) = 0 for all i}

Let 7 : k[X] — S be the projection map, then = is surjective with kernel (f;(X), f2(X), ..., fr(X)). Thus
the map 7* : Hom(S, R) — Hom(k[X], R) is injective, and the image of 7* are exactly those morphisms
¢ : k[X] — R such that (f1(X), f2(X), ..., fr(X)) C ker(¢). However, any k-algebra homomorphism ¢ :
k[X] — R can be identified with (£(X1),&(X2),...,£(Xm)) € R™ because £ is uniquely determined by where
it sends X7, ..., X, and also any £ determines a number (£(X1),&(X2),...,£(Xm)) € R™. So

Hom(k[X],R) <> {a € R™}

is a bijection.

Since the ideal (f1(X), f2(X), ..., fr(X)) = {rifi + rofa + ... + rmfim|rm € kE[X]}, we can infer from this
that (f1(X), f2(X), ..., fr(X)) C ker(€) if and only if f7((£(X1),&(X2),...,£(X:m))) = 0 for all i. Therefore
the sets below are bijections

Hom(S,R) <+ {¢: k[X] = R: (f1(X), f2(X), ..., [r(X)) C ker(§)} <> {a € R™|f!(a) = 0 for all i}

This shows that for this S, we have an isomorphism of functors i : h¢’ = F. To show that the (S,) are
unique up to unique isomorphism, we use Question 1, which is Yoneda’s lemma. Yoneda’s Lemma state that

h:C — Fun(C, Set)

is a fully faithful functor. Thus if some other pair (7,j) also satisfies j : ho? = F, we have hg = hr, and

using Yoneda’s lemma, S 2 T and the isomorphism is unique.

Question 3.

1. Given that F is representable, and (.5,4) is the pair with S € C and i : hg = F, then let Id € hg(S) =
Hom(S, S) be the identity morphism, we see that ig(Id) € F(S), so F(S) is not empty. Since F'(S) is
not an empty set, we see that there exist a commutative diagram

S ——>Y

L

X —7

2. Let S = {(z,y) € X xY|f(z) = g(y)}. We will show that given f : X - Zandg:Y — Z, F
can be represented by this S. Given any W € Set, and any h € Homge:(W, S), we define a natural
transformation i : hg — F at W by iw : h — (psz o h,py o h), where p,, p, are projection maps from S
to its first and second factor respectively. This is a natural transformation because given g : W7 — W,
the following maps commute:

h
hx(Wl) ﬂ hx(Wg) hOg h
Z'WI\L ’L'Wz\L Given by in\L in\L
F
F(Wl)&F(Wz) (pzrohog,pyohog) <= (pzoh,pyoh)



It remains to show that for each W, the map 4y is an isomorphism (i.e. a bijection in Set). We will
construct an inverse jy to iy, as follows: Let (a,b) € F(W), then we let h : W — S by mapping r to
(a(r),b(r)). This function is well defined by construction, and (a(r), b(r)) is in S. We need to show that
Jjw oiw and iy o jy are the identity functions respectively. The first one takes a function A to a pair
of maps (pg o h, p, o k), which is taken to the function g : w — (ps o h(w), py o h(w)) = h(w), so g = h.
On the other hand, the second one takes a pair of functions (a,b) € F(W) to a map h € Hom(W, S) by
taking r — (a(r),b(r)), and this map is taken back to a pair (p,oh, p,oh) = (a,b) by our construction.
Thus given f, g, F is represented by this S. Since f, g are arbitrary, Set has fiber products.

As for the case Set°P, we consider S = (X [[Y)/{f(z) ~ g(2)}, the disjoint union of X and Y with
the points f(x),g(x) identified. Given h € Hom(S,B), we get a pair of maps (h o iz, h o 4,) where
iz : X > X][Yandi,:Y — X [[Y are the obvious maps. Then we see that hoi,(f(2)) = h(g(z)) =
hoiy(g(2)), so hoizo f=hoi,og. On the other hand, given a : X — B and b: Y — B, we define
h € Hom(S, B) by mapping s — a(x) if s = i,(z) and mapping s — b(y) if s € i,(y). This is a well
defined function, as points f(z), g(z) are identified. Now given h € Hom(S, B), we get a pair of maps
(hoig, hoiy), and from our construction we get back the original map h: S — B. Givena: X — B
and b:Y — B, we get a map h € Hom(S, B) by mapping s — a(x) if s = i,(z) and mapping s — b(y)
if s € i,(y), from which we recover the pair of maps (a,b). Thus S is the representing object for the
given f, g in the category Set°P. Since f,g are arbitrary, Set°? has fiber products.

. Consider first the forgetful functor from Ring to Set, then we see that if F' is representable for any given
f and g, then as sets, the representation S must be of the form S = {(z,y) € X x Y|f(z) = g(v)}.
Hence we define S = {(z,y) € X x Y|f(z) = g(y)}, where f, g are commutative ring homomorphisms
from commutative rings X to Y. Now we check that this S is a commutative ring: Given any (x1,y;)
and (w2,y2) € S, we see that f(z1 —x2) = f(z1) — f(22) = 9(y1) — 9(y2) = 9(y1 — y2) and f(z122) =
flx1) f(x2) = g(y1)g(y2) = g(y1y=), so S is a subring of X x Y, and thus S € Ring. Now using a very
similar argument as the previous part of this problem we see that S is the representing object, and
thus Ring has fiber products.

. Claim that the commutative ring S = X ®z Y satisfies hg = F in Ring°?. First of all, since X,Y are
both commutative rings and f : Z — X and g : Z — Y, we see that X, Y are both Z-algebras. We can
then form a tensor product X ® 7Y, and this product has a well-defined multiplication (a®b)(a’ ®b') =
aa’ @ bb', which makes X ®7 Y into a commutative ring (and also a Z-algebra).

We will show that there is a bijection of sets between {(a : X — W,b:Y — W)lao f = bo g} and
Hom(S,W). Given any (a,b) € F(W)={(a: X > W,b:Y — W)|ao f = bog}, we have the following
Z-bilinear map

XXV (a, b) W s W multiplication in W W

which gives a Z-module map X ®, Y — C by taking v(z ® y) = a(z)b(y). Now as elements in a(X)
and b(Y") commute (being elements of a commutative ring W), we see that the mapv: X ®zY — C
is actually a ring homomorphism, since

T1Z2 @ Y1Y2)
7172)b(y1Y2)

v((z1 @ y1)(z2 ® Y2)) = v(

a(
a(r1)a(z2)b(y1)b(y2)
a(z1) T2

o

21)b(y1)a(r2)b(y2)
T1 @ y1)v(T2 @ Y2)

Thus given (a,b) we have constructed a map v € Hom(S, W).

On the other hand, given a commutative ring homomorphism v : S — W, we define a : X — W by
a:zx—v(z®l)andb:Y - Wby b:y+— v(1®y). The maps a, b satisfies ao f = bog by construction,
as a(f(z)) =v((z-1) ®1) =v(1@ (2-1)) = bg(2))-



The maps above gives a bijection: Given v € Hom(S,W), our construction sends v to the map
taking (z,y) to (v(z ® 1),v(1 ® y)) — v(x ® y), and this map is in turn send to the map h taking
hzey) =v(E®1)v(l®y) = v(r®y), thus the composition of the two constructions gives back v. On
the other hand, if we start out with (a, ), then we get a map v(z ® y) = a(x)b(y), and this map gives
us a pair (a/,V) by d' :x = v(z®1) =a(z) and b : y — v(1 ® y) = b(y). Thus (a’,b’) = (a,b) and we
recover the pair (a,b) again. Thus there is a bijection between {(a : X — W,b:Y — W)lao f =bog}
and Hom(S,W). Thus S is the representing object for the given f,g in the category Ring°?. Since
f, g are arbitrary, Ring°? has fiber products.

Question 4.

Consider the functor h(p/ng,c and h(pg,cy/r- We will find out what these two functors represent.
The functor hxg ,v for any given X, Y € Ring is the pushout in the category Ring in Question 3-4. On the
other hand, X/Y for any X € Ring and Y C X an ideal is a representation of the functor F : Ring — Set
by taking W — {p: X — W[Y C ker(p)}. Thus we see that h(g,5g,c represents the functor F sending
Wi {(a:B/I - W,b:C — W)laopof =bog}, (where p: B — B/I is the projection map), which further
represents the functor F” sending W — {(¢/ : B - W,b: C — W)la'o f =bogand I C ker(a’)}. On the
other hand, we see that h(pg,c)/re represents the functor G sending W+ {d: B ®4 C — |I¢ C ker(d)},
which further represents the functor G’ sending W — {(a : B — W,b: C' — W)|aof = bog and I C ker(a)}.
Thus it is clear that G’ = F', which implies that h(p/ng.c = h(Boc)/1e, and thus by Yoneda’s lemma,
which is proved in Question 1, we conclude that

(B/I)®4C = (B®a 0)/I°

Question 5.

Let
A= {a = (al,ag, ) € 1_‘[6'z La; = 7Ti+1(ai+1)Vi S N}

i=1
Claim that this is the representing object for @Gn. We will show this by showing that given any B € Gp,
there is a bijection between Homg, (B, A) and l'&nGn(B).

We note first that if p,, : A — G, are the projection of A to the n-th factor, then by our construction of
A, we have p, = mp4+1 0 pp41 for all n.

Given any f € Homgy(B,A), we let h, = p, o f: B — G, for all n € N, where the maps p,, are the
projection A — G, to the n-th factor. For n > 2, we see that h,_1 = p,_10f =m,op,of =m,0h,. Thus
we obtain an element of @Gn(B).

On the other hand, given a set of collection of maps {h,, : B — G, }>2; such that h,_; = 7, o h,, for all
n > 2, we obtain a map f : B — A by taking f(b) = (h1(b), h2(b), ..., An(D),...). The image is in A because
h(b); = hi(b) = mix1hir1(b) = mix1h(b);x1 for all i € N. This is a group homomorphism since each h,, is a
group homomorphism for all n. Thus we obtain a homomorphism B — A for any element in limG,, (B).

The ”composite” of these two constructions are ”inverse” of each other, as can be seen as follows: A
homomorphism f : B — A is taken to the element {p, o f : B — G,} € ].iHmGn(B), which is taken to the
function h : B — A by taking h: b +— (p1 o f(b),p20 f(b),...,pn 0 f(b),...) = f(b), so h = f and we get back
the original homomorphism f. On the other hand, an element {h, : B — G} € limG,(B) is taken to the
homomorphism f : B — A by taking f(b) = (h1(b), ha(b), ..., hn(b),...), from which we get a collection of
maps {p, o f} = {hy}, which is the original collection. Thus there is a bijection between Homg,(B, A) and
]gnGn(B). This shows that I'&nGn is representable, and S is the representing object.



