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Question 1.

We will show that the functor
h : C → Fun(Cop, Set)

gives a bijection
hX,Y : HomC(X,Y )→ HomFun(Cop,Set)(h(X), h(Y ))

for all X,Y ∈ C.
Given any arbitrary X,Y ∈ C and f ∈ HomC(X,Y ), we let m be a natural transformation from hX

to hY defined as follows: Given any A ∈ C, we let mA : hX(A) → hY (A) by taking h 7→ f ◦ h where
h ∈ Hom(A,X) = hX(A). Suppose g : A→ A′, then we see that the diagram

hX(A) <
hX(g)

hX(A′) h ◦ g <
hX(g)

h

is given by

hY (A)

mA
∨

<
hY (g)

hY (A′)

mA′
∨

f ◦ h ◦ g

mA
∨

<
hY (g)

f ◦ h

mA′

∨

and thus the diagram commutes.
On the other hand, given any natural transformation m ∈ HomFun(Cop,Set)(h(X), h(Y )), we consider the

map mX : HomC(X,X)→ HomC(X,Y ), and let f = mX(Id) where Id ∈ HomC(X,X) is the identity map.
Then mX(Id) ∈ HomC(X,Y ).

The two paragraphs above show that we can obtain a C-morphism f ∈ HomC(X,Y ) from a natural
transformation m ∈ HomFun(Cop,Set)(h(X), h(Y )) and vice versa. It remains to show that these two con-
structions are ”inverses” of each other. Given any m ∈ HomFun(Cop,Set)(h(X), h(Y )), the C-morphism we get
is mX(Id) : X → Y . From this mx(Id) we get a natural transformation n ∈ HomFun(Cop,Set)(h(X), h(Y ))
sending (for any given A ∈ C and f1 ∈ hX(A)) f1 7→ mX(Id) ◦ f1 = mA(f1) where the last equality is true
because m is natural so the diagram commutes:

hX(A) <
hX(f1)

hX(X) Id ◦ f1 <
hX(f1)

Id

is given by

hY (A)

mA
∨

<
hY (f1)

hY (X)

mX
∨

mX(Id) ◦ f1

mA
∨

<
hY (f1)

mX(Id)

mX
∨

so n = m and we get back the original natural transformation m.
On the other hand, given any f ∈ HomC(X,Y ), the natural transformation we get is f ◦ (), the natural

transformation given by left composition by f . From this natural transformation, we get back the C-morphism
f ◦ (Id) = f .

What this shows is that there is a bijection

hX,Y : HomC(X,Y )→ HomFun(Cop,Set)(h(X), h(Y ))
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for all X,Y ∈ C, so the association A 7→ hA defines a fully faithful functor

h : C → Fun(Cop, Set)

Question 2.

Let the k-algebra S be k[X]/(f1(X), f2(X), ..., fr(X)). We will show that hS ∼= F by showing that given
a k-algebra g : k → R, there is a bijection (isomorphism of sets)

Hom(S,R)↔ {a ∈ Rm|fgi (a) = 0 for all i}

Let π : k[X] → S be the projection map, then π is surjective with kernel (f1(X), f2(X), ..., fr(X)). Thus
the map π∗ : Hom(S,R) → Hom(k[X], R) is injective, and the image of π∗ are exactly those morphisms
ξ : k[X] → R such that (f1(X), f2(X), ..., fr(X)) ⊂ ker(ξ). However, any k-algebra homomorphism ξ :
k[X]→ R can be identified with (ξ(X1), ξ(X2), ..., ξ(Xm)) ∈ Rm because ξ is uniquely determined by where
it sends X1, ..., Xn, and also any ξ determines a number (ξ(X1), ξ(X2), ..., ξ(Xm)) ∈ Rm. So

Hom(k[X], R)↔ {a ∈ Rm}

is a bijection.
Since the ideal (f1(X), f2(X), ..., fr(X)) = {r1f1 + r2f2 + ...+ rmfm|rm ∈ k[X]}, we can infer from this

that (f1(X), f2(X), ..., fr(X)) ⊂ ker(ξ) if and only if fgi ((ξ(X1), ξ(X2), ..., ξ(Xm))) = 0 for all i. Therefore
the sets below are bijections

Hom(S,R)↔ {ξ : k[X]→ R : (f1(X), f2(X), ..., fr(X)) ⊂ ker(ξ)} ↔ {a ∈ Rm|fgi (a) = 0 for all i}

This shows that for this S, we have an isomorphism of functors i : hopS
∼= F . To show that the (S, i) are

unique up to unique isomorphism, we use Question 1, which is Yoneda’s lemma. Yoneda’s Lemma state that

h : C → Fun(Cop, Set)

is a fully faithful functor. Thus if some other pair (T, j) also satisfies j : hopT
∼= F , we have hS ∼= hT , and

using Yoneda’s lemma, S ∼= T and the isomorphism is unique.

Question 3.

1. Given that F is representable, and (S, i) is the pair with S ∈ C and i : hS ∼= F , then let Id ∈ hS(S) =
Hom(S, S) be the identity morphism, we see that iS(Id) ∈ F (S), so F (S) is not empty. Since F (S) is
not an empty set, we see that there exist a commutative diagram

S > Y

X
∨ f

> Z

g
∨

2. Let S = {(x, y) ∈ X × Y |f(x) = g(y)}. We will show that given f : X → Z and g : Y → Z, F
can be represented by this S. Given any W ∈ Set, and any h ∈ HomSet(W,S), we define a natural
transformation i : hS → F at W by iW : h 7→ (px ◦ h, py ◦ h), where px, py are projection maps from S
to its first and second factor respectively. This is a natural transformation because given g : W1 →W2,
the following maps commute:

hX(W1) <
hX(g)

hX(W2) h ◦ g < h

Given by

F (W1)

iW1∨
<
F (g)

F (W2)

iW2∨
(px ◦ h ◦ g, py ◦ h ◦ g)

iW1∨
< (px ◦ h, py ◦ h)

iW2∨
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It remains to show that for each W , the map iW is an isomorphism (i.e. a bijection in Set). We will
construct an inverse jW to iW , as follows: Let (a, b) ∈ F (W ), then we let h : W → S by mapping r to
(a(r), b(r)). This function is well defined by construction, and (a(r), b(r)) is in S. We need to show that
jW ◦ iW and iW ◦ jW are the identity functions respectively. The first one takes a function h to a pair
of maps (px ◦ h, py ◦ h), which is taken to the function g : w 7→ (px ◦ h(w), py ◦ h(w)) = h(w), so g = h.
On the other hand, the second one takes a pair of functions (a, b) ∈ F (W ) to a map h ∈ Hom(W,S) by
taking r 7→ (a(r), b(r)), and this map is taken back to a pair (px ◦h, py ◦h) = (a, b) by our construction.
Thus given f, g, F is represented by this S. Since f, g are arbitrary, Set has fiber products.

As for the case Setop, we consider S = (X
∐
Y )/{f(z) ∼ g(z)}, the disjoint union of X and Y with

the points f(x), g(x) identified. Given h ∈ Hom(S,B), we get a pair of maps (h ◦ ix, h ◦ iy) where
ix : X → X

∐
Y and iy : Y → X

∐
Y are the obvious maps. Then we see that h◦ ix(f(z)) = h(g(z)) =

h ◦ iy(g(z)), so h ◦ ix ◦ f = h ◦ iy ◦ g. On the other hand, given a : X → B and b : Y → B, we define
h ∈ Hom(S,B) by mapping s 7→ a(x) if s = ix(x) and mapping s 7→ b(y) if s ∈ iy(y). This is a well
defined function, as points f(z), g(z) are identified. Now given h ∈ Hom(S,B), we get a pair of maps
(h ◦ ix, h ◦ iy), and from our construction we get back the original map h : S → B. Given a : X → B
and b : Y → B, we get a map h ∈ Hom(S,B) by mapping s 7→ a(x) if s = ix(x) and mapping s 7→ b(y)
if s ∈ iy(y), from which we recover the pair of maps (a, b). Thus S is the representing object for the
given f, g in the category Setop. Since f, g are arbitrary, Setop has fiber products.

3. Consider first the forgetful functor from Ring to Set, then we see that if F is representable for any given
f and g, then as sets, the representation S must be of the form S = {(x, y) ∈ X × Y |f(x) = g(y)}.
Hence we define S = {(x, y) ∈ X × Y |f(x) = g(y)}, where f, g are commutative ring homomorphisms
from commutative rings X to Y . Now we check that this S is a commutative ring: Given any (x1, y1)
and (x2, y2) ∈ S, we see that f(x1 − x2) = f(x1)− f(x2) = g(y1)− g(y2) = g(y1 − y2) and f(x1x2) =
f(x1)f(x2) = g(y1)g(y2) = g(y1y2), so S is a subring of X × Y , and thus S ∈ Ring. Now using a very
similar argument as the previous part of this problem we see that S is the representing object, and
thus Ring has fiber products.

4. Claim that the commutative ring S = X ⊗Z Y satisfies hS ∼= F in Ringop. First of all, since X,Y are
both commutative rings and f : Z → X and g : Z → Y , we see that X,Y are both Z-algebras. We can
then form a tensor product X⊗Z Y , and this product has a well-defined multiplication (a⊗b)(a′⊗b′) =
aa′ ⊗ bb′, which makes X ⊗Z Y into a commutative ring (and also a Z-algebra).

We will show that there is a bijection of sets between {(a : X → W, b : Y → W )|a ◦ f = b ◦ g} and
Hom(S,W ). Given any (a, b) ∈ F (W ) = {(a : X →W, b : Y →W )|a◦f = b◦g}, we have the following
Z-bilinear map

X × Y
(a, b)

> W ×W
multiplication in W

> W

which gives a Z-module map X ⊗Z Y
v−→ C by taking v(x⊗ y) = a(x)b(y). Now as elements in a(X)

and b(Y ) commute (being elements of a commutative ring W ), we see that the map v : X ⊗Z Y −→ C
is actually a ring homomorphism, since

v((x1 ⊗ y1)(x2 ⊗ y2)) = v(x1x2 ⊗ y1y2)

= a(x1x2)b(y1y2)

= a(x1)a(x2)b(y1)b(y2)

= a(x1)b(y1)a(x2)b(y2)

= v(x1 ⊗ y1)v(x2 ⊗ y2)

Thus given (a, b) we have constructed a map v ∈ Hom(S,W ).

On the other hand, given a commutative ring homomorphism v : S → W , we define a : X → W by
a : x 7→ v(x⊗1) and b : Y →W by b : y 7→ v(1⊗y). The maps a, b satisfies a◦f = b◦g by construction,
as a(f(z)) = v((z · 1)⊗ 1) = v(1⊗ (z · 1)) = b(g(z)).
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The maps above gives a bijection: Given v ∈ Hom(S,W ), our construction sends v to the map
taking (x, y) to (v(x ⊗ 1), v(1 ⊗ y)) 7→ v(x ⊗ y), and this map is in turn send to the map h taking
h(x⊗ y) = v(x⊗1)v(1⊗ y) = v(x⊗ y), thus the composition of the two constructions gives back v. On
the other hand, if we start out with (a, b), then we get a map v(x⊗ y) = a(x)b(y), and this map gives
us a pair (a′, b′) by a′ : x 7→ v(x⊗ 1) = a(x) and b′ : y 7→ v(1⊗ y) = b(y). Thus (a′, b′) = (a, b) and we
recover the pair (a, b) again. Thus there is a bijection between {(a : X →W, b : Y →W )|a ◦ f = b ◦ g}
and Hom(S,W ). Thus S is the representing object for the given f, g in the category Ringop. Since
f, g are arbitrary, Ringop has fiber products.

Question 4.

Consider the functor h(B/I)⊗AC and h(B⊗AC)/Ie . We will find out what these two functors represent.
The functor hX⊗AY for any given X,Y ∈ Ring is the pushout in the category Ring in Question 3-4. On the
other hand, X/Y for any X ∈ Ring and Y ⊂ X an ideal is a representation of the functor F : Ring → Set
by taking W 7→ {p : X → W |Y ⊂ ker(p)}. Thus we see that h(B/I)⊗AC represents the functor F sending
W 7→ {(a : B/I →W, b : C →W )|a◦p◦f = b◦g}, (where p : B → B/I is the projection map), which further
represents the functor F ′ sending W 7→ {(a′ : B → W, b : C → W )|a′ ◦ f = b ◦ g and I ⊂ ker(a′)}. On the
other hand, we see that h(B⊗AC)/Ie represents the functor G sending W 7→ {d : B ⊗A C → |Ie ⊂ ker(d)},
which further represents the functor G′ sending W 7→ {(a : B →W, b : C →W )|a◦f = b◦g and I ⊂ ker(a)}.
Thus it is clear that G′ ∼= F ′, which implies that h(B/I)⊗AC

∼= h(B⊗AC)/Ie , and thus by Yoneda’s lemma,
which is proved in Question 1, we conclude that

(B/I)⊗A C ∼= (B ⊗A C)/Ie

Question 5.

Let

A =

{
a = (a1, a2, ...) ∈

∞∏
i=1

Gi : ai = πi+1(ai+1)∀i ∈ N

}
Claim that this is the representing object for lim←−Gn. We will show this by showing that given any B ∈ Gp,
there is a bijection between HomGp(B,A) and lim←−Gn(B).

We note first that if pn : A→ Gn are the projection of A to the n-th factor, then by our construction of
A, we have pn = πn+1 ◦ pn+1 for all n.

Given any f ∈ HomGp(B,A), we let hn = pn ◦ f : B → Gn for all n ∈ N, where the maps pn are the
projection A→ Gn to the n-th factor. For n ≥ 2, we see that hn−1 = pn−1 ◦ f = πn ◦ pn ◦ f = πn ◦hn. Thus
we obtain an element of lim←−Gn(B).

On the other hand, given a set of collection of maps {hn : B → Gn}∞n=1 such that hn−1 = πn ◦ hn for all
n ≥ 2, we obtain a map f : B → A by taking f(b) = (h1(b), h2(b), ..., hn(b), ...). The image is in A because
h(b)i = hi(b) = πi+1hi+1(b) = πi+1h(b)i+1 for all i ∈ N. This is a group homomorphism since each hn is a
group homomorphism for all n. Thus we obtain a homomorphism B → A for any element in lim←−Gn(B).

The ”composite” of these two constructions are ”inverse” of each other, as can be seen as follows: A
homomorphism f : B → A is taken to the element {pn ◦ f : B → Gn} ∈ lim←−Gn(B), which is taken to the

function h : B → A by taking h : b 7→ (p1 ◦ f(b), p2 ◦ f(b), ..., pn ◦ f(b), ...) = f(b), so h = f and we get back
the original homomorphism f . On the other hand, an element {hn : B → Gn} ∈ lim←−Gn(B) is taken to the

homomorphism f : B → A by taking f(b) = (h1(b), h2(b), ..., hn(b), ...), from which we get a collection of
maps {pn ◦ f} = {hn}, which is the original collection. Thus there is a bijection between HomGp(B,A) and
lim←−Gn(B). This shows that lim←−Gn is representable, and S is the representing object.

4


